[1]
Draft IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile BroadbandWireless Access Systems, IEEE Draft Standard 802. 16e/D7, (2005).
DOI: 10.1109/ieeestd.2004.226664
Google Scholar
[2]
E. Haas, Aeronautical channel modeling, IEEE Trans. Veh. Technol., vol. 51, no. 2, p.254–264, Mar. (2002).
DOI: 10.1109/25.994803
Google Scholar
[3]
Z. Tang, R. C. Cannizzaro, G. Leus, and P. Banelli, Pilot-assisted time-varying channel estimation for OFDM systems, IEEE Trans. Signal Process., vol. 55, no. 5, p.2226–2238, May (2007).
DOI: 10.1109/tsp.2007.893198
Google Scholar
[4]
T. Zemen and C. F. Mecklenbrauker, Time-variant channel estimation using discrete prolate spheroidal sequences, IEEE Trans. Signal Process., vol. 53, no. 9, p.3597–3607, Sep. (2005).
DOI: 10.1109/tsp.2005.853104
Google Scholar
[5]
Z. Tang and G. Leus, Pilot schemes for time-varying channel estimation in OFDM systems, in Proc. IEEE Workshop Signal Process. Advances Wireless Commun., June 2007, p.1–5.
DOI: 10.1109/spawc.2007.4401307
Google Scholar
[6]
C. Shin, J. G. Andrews, and E. J. Powers, An efficient design of doubly selective channel estimation for OFDM systems, IEEE Trans. Wireless Commun., vol. 6, no. 10, p.3790–3802, Oct. (2007).
DOI: 10.1109/twc.2007.060134
Google Scholar
[7]
H. A. Cirpan and M. K. Tsatsanis, Maximum likelihood blind channel estimation in the presence of Doppler shifts, IEEE Trans. Signal Process., vol. 47, no. 6, p.1559–1569, June (1999).
DOI: 10.1109/78.765125
Google Scholar
[8]
M. Guillaud and D. T. M. Slock, Channel modeling and associated inter-carrier interference equalization for OFDM systems with high doppler spread, in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., Apr. 2003, vol. 4, p.237–240.
DOI: 10.1109/icassp.2003.1202606
Google Scholar
[9]
D. K. Borah and B. T. Hart, Frequency-selective fading channel estimation with a polynomial time-varying channel model, IEEE Trans. Commun., vol. 47, no. 6, p.862–873, June (1999).
DOI: 10.1109/26.771343
Google Scholar
[10]
A. P. Kannu and P. Schniter, MSE-optimal training for linear timevarying channels, in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., vol. 3, Mar. (2005).
DOI: 10.1109/icassp.2005.1415828
Google Scholar
[11]
Design and analysis of MMSE pilot-aided cyclic-prefixed block transmission for doubly selective channels, IEEE Trans. Signal Process., vol. 56, no. 3, p.1148–1160, Mar. (2008).
DOI: 10.1109/tsp.2007.908969
Google Scholar
[12]
T. Hrycak, S. Das, G. Matz, and H. Feichtinger, Practical estimation of rapidly varying channels for OFDM systems, IEEE Trans. Commun., vol. 59, no. 11, p.3040–3048, (2011).
DOI: 10.1109/tcomm.2011.082111.110075
Google Scholar
[13]
T. Hrycak, S. Das, G. Matz, Inverse Methods for Reconstruction of Channel Taps in OFDM Systems, IEEE Trans. Signal Process., vol. 60, no. 5, pp.2666-2671, (2012).
DOI: 10.1109/tsp.2012.2187522
Google Scholar
[14]
B. D. Shizgal and J. -H. Jung, Towards the resolution of the Gibbs phenomena, J. Comput. Appl. Math., vol. 161, no. 1, p.41–65, (2003).
Google Scholar
[15]
D. M. Gruenbacher and D. R. Hummels, A simple algorithm for generating discrete prolate spheroidal sequences, IEEE Trans. Signal Processing, vol. 42, p.3276–3278, Nov. (1994).
DOI: 10.1109/78.330397
Google Scholar