Mechanochemical Synthesis of Magnesium Doped Hydroxyapatite: Powder Characterization

Article Preview

Abstract:

In this study, the mechanochemical method was employed to synthesize hydroxyapatite (HA) and magnesium (Mg) doped hydroxyapatite (HA) powders. The effect of Mg2+ into the synthesized HA powder properties were investigated. Characterization of the synthesized HA and Mg doped HA at various concentrations (1% - 5% MgHA) were accomplished through X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses. nanosize of HA and Mg doped HA powders were successfully synthesized through the present method as indicated from the different peaks intensity and adsorption bands obtained in XRD pattern and FTIR respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-65

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kannan, J. M. G. Ventura, A. F. Lemos, A. Barba, J. M. F. Ferreira, Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics, Cer. Inter. 34 (2008) 7-13.

DOI: 10.1016/j.ceramint.2006.07.007

Google Scholar

[2] A. Gozalian, A. Behnamghader, M. Daliri, A. Moshkforoush, Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol gel method, Sci. Iran. 18 (2011) 1614-1622.

DOI: 10.1016/j.scient.2011.11.014

Google Scholar

[3] A. Bianco, I. Cacciotti, M. Lombardi, L. Montanaro, Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability, Mater. Res. Bullet. 44 (2009), 345-354.

DOI: 10.1016/j.materresbull.2008.05.013

Google Scholar

[4] I. Cacciotti, A. Bianco, M. Lombardi, L. Montanaro, Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour, J. Euro. Cer. Soc. 29 (2009) 969-2978.

DOI: 10.1016/j.jeurceramsoc.2009.04.038

Google Scholar

[5] E. Landi, A. Tampieri, M. Mattioli-Belmonte, G. Celotti, M. Sandri, A. Gigante, Biomemitic Mg- and Mg, CO3-substituted hydroxyapatites: synthesis characterization and in vitro behavior, J. Euro. Cer. Soc. 26 (2006) 2593-2601.

DOI: 10.1016/j.jeurceramsoc.2005.06.040

Google Scholar

[6] S. Adzila, M. C. Murad, I. Sopyan, Doping metal into calcium phosphate phase for better performance of bone implant materials, Rec. Pat. Mater. Sci. 5 (2012) 18-47.

DOI: 10.2174/1874464811205010018

Google Scholar

[7] W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, K. S. T. Huisen, Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method, Biomaterials. 25 (2004) 4647-4657.

DOI: 10.1016/j.biomaterials.2003.12.008

Google Scholar

[8] S. J. Kalita, H. A. Bhatt, Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization, Mater. Sci. & Eng. C. 27 (2007) 837-848.

DOI: 10.1016/j.msec.2006.09.036

Google Scholar

[9] J. Salas, Z. Benzo, G. Gonzalez, E. Marcano, C. Gómez, Effect of Ca/P ratio and milling material on the mechanochemical preparation of hydroxyapaptite, J. Mater. Sci.: Mater. Med. 20 (2009) 2249-2257.

DOI: 10.1007/s10856-009-3804-3

Google Scholar

[10] S. Adzila, I. Sopyan, M. Hamdi, S. Ramesh, Mechanochemical synthesis of nanosized hydroxyapatite powder and its conversion to dense bodies, Mater. Sci. Forum. 694 (2011) 118-122.

DOI: 10.4028/www.scientific.net/msf.694.118

Google Scholar