The Surface and Interface Microstructure of Epitaxial Pr0.7Sr0.3MnO3/La0.5Ca0.5MnO3 Bilayer Structure

Article Preview

Abstract:

Epitaxial bilayer structure consisting of ferromagnetic (FM) metallic Pr0.7Sr0.3MnO3 (PSMO) and antiferromagnetic (AFM) insulator La0.5Ca0.5MnO3 (LCMO) was fabricated on (001)-oriented single crystal SrTiO3 (STO) substrate by pulsed laser deposition technique. We studied the surface structure and interdiffusion at interface between PSMO and LCMO by using atomic force microscope and grazing incident x-ray reflectivity (GIXRR). The perfect data fitting result of GIXRR indicated that interdiffusion at the interface of Pr0.7Sr0.3MnO3/La0.5Ca0.5MnO3 (PSMO/LCMO) could not be negligible; there was a large interdiffusion zone at the PSMO/LCMO interfaces with a thickness of about 7 nm. We found that the thickness of the top layer at air/PSMO interface was about 2.5 nm and the mass density of the top layer was about 76.53% of that of PSMO layer. The surface roughness was about 1.6 nm which was consistent with observation by atomic force microscopy. Normal X-ray diffraction (NXRD) was also employed to investigate the average structure. Except from PSMO and LCMO layer diffraction peaks, we observed another additional peak, which was developed from the large disordered layer resulting from interdiffusion at the interface of PSMO/LCMO. This implied that the variation of crystalline structure of PSMO/LCMO film occurred due to interdiffusion. Surface roughness and interdiffusion played an important role in magnetic properties of FM/AFM bilayer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-79

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Chappert, A. Fert, F. Nguyen Van Dau, The emergence of spin electronics in data storage, Nature Materials. 6 (2007) 813-823.

DOI: 10.1038/nmat2024

Google Scholar

[2] P. Padhan, W. Prellier, Effect of strain on the electrical transport and magnetization of Pr0. 5Ca0. 5MnO3/La0. 5Ca0. 5MnO3/Pr0. 5Ca0. 5MnO3 trilayer structures, Phys. Rev. B. 72 (2005) 094407.

Google Scholar

[3] S. Y. Park, Y.H. Hyun, Y. P. Lee, V. L. Svetchnikov, K.W. Kim, V.G. Prokhorov, Evidence for the charge-ordered state and phase separation at room temperature in half-doped La0. 5Ca0. 5MnO3 films, Appl. Phys. Lett. 89 (2006) 052502.

DOI: 10.1063/1.2243340

Google Scholar

[4] T. Z. Ward, Z. Gai, X.Y. Xu, H.W. Guo, L.F. Yin, J. Shen , Tuning the metal-insulator transition in manganite films through surface exchange coupling with magnetic nanodots, Phys. Rev. Lett. 106 (2011) 157207.

DOI: 10.1103/physrevlett.106.157207

Google Scholar

[5] D. Niebieskikwiat, L. E. Hueso, J. A. Borchers, N. D. Mathur, M. B. Salamon, Nanoscale magnetic structure of ferromagnet/antiferromagnet manganite multilayers, Phys. Rev. Lett. 99 (2007) 247207.

DOI: 10.1103/physrevlett.99.247207

Google Scholar

[6] J. Hoppler, J. Stahn, Ch. Niedermayer, V. K. Malik, H. Bouyanfif, A. J. Drew, M. Rössle, A. Buzdin, G. Cristiani, H. -U. Habermeier, B. Keimer, C. Bernhard, Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate-manganite superlattice, Nature Materials. 8 (2009).

DOI: 10.1038/nmat2383

Google Scholar

[7] D. K. Satapathy, M. A. Uribe-Laverde, I. Marozau, V. K. Malik, S. Das, Th. Wagner, C. Marcelot, J. Stahn, S. Brück, A. Rühm, S. Macke, T. Tietze, E. Goering, A. Frañó, J. -H. Kim, M. Wu, E. Benckiser, B. Keimer, A. Devishvili, B. P. Toperverg, M. Merz, P. Nagel, S. Schuppler, C. Bernhard, Magnetic proximity effect in YBa2Cu3O7/La2/3Ca1/3MnO3 and YBa2Cu3O7/LaMnO3+δ superlattices, Physical Review Letters. 108 (2012).

DOI: 10.1103/physrevlett.108.197201

Google Scholar

[8] H.O. Wang, P. Dai, H. Liu and W. S. Tan, F. Xu, X. S. Wu, Q. J. Jia, G. J. Hu, J. Gao, Magnetic and transport properties of Pr0. 7Sr0. 3MnO3/La0. 5Ca0. 5MnO3/ Pr0. 7Sr0. 3MnO3 trilayers, Int. J. Mod. Phys. B. 26 (2012) 1250132.

DOI: 10.1007/s12034-014-0624-y

Google Scholar

[9] REFS Reflectivity Simulation Software (Bede Scientific Instruments, Lindsey Park, Durham, UK, 1996).

Google Scholar

[10] W. S. Tan, X.S. Wu,J. Du, J.S. Liu, A. Hu, S.S. Jiang, J. Wang, Z.H. Wu, W. L. Zheng, Q.J. Jia, J. Gao, Microstructures and resistivity of cuprate/manganite bilayer deposited on SrTiO3 substrate, J. Appl. Phys. 93 (2003) 8215.

DOI: 10.1063/1.1541653

Google Scholar

[11] S. -W. Han, S. Tripathy, P. F. Miceli, E. Badica, M. covington, L. H. Greene ,M. Aprili, X-ray reflectivity study of interdiffusion at YBa2Cu3O7-x and metal interfaces, Jpn. J. Appl. Phys. 42 (2003) 1395-1399.

DOI: 10.1143/jjap.42.1395

Google Scholar

[12] S. -W. Han, J.A. Pitney, P.F. Miceli, M. Covington, L.H. Greene, M.J. Godbole, D.H. Lowndes, X-ray reflectivity study of thin film oxide superconductors, Physica B. 221 (1996) 235-237.

DOI: 10.1016/0921-4526(95)00931-0

Google Scholar

[13] G. Palasantzas , Y.P. Zhao, J. Th. M. De Hosson, G. C. Wang, Roughness effects on magnetic properties of thin films, Physica B. 283 (2000) 199-202.

DOI: 10.1016/s0921-4526(99)01939-0

Google Scholar

[14] J. Swerts, K. Temst, N. Vandamme, C. Van Haesendonck, Y. Bruynseraede, Interplay between surface roughness and magnetic properties in Ag/Fe bilayers, Journal of Magnetism and Magnetic Materials. 240 (2002) 380-382.

DOI: 10.1016/s0304-8853(01)00832-0

Google Scholar

[15] A. Maitre, D. Ledue, R. Patte, Interfacial roughness and temperature effects on exchange bias properties in coupled ferromagnetic/antiferromagnetic bilayers, Journal of Magnetism and Magnetic Materials. 324 (2012) 403-409.

DOI: 10.1016/j.jmmm.2011.07.049

Google Scholar

[16] S. Colis, G. Schmerber, A. Dinia, Correlation between magnetic and transport properties of Co/Ir/Co sandwiches and surface roughness, Thin Solid Films. 380 (2000) 137-141.

DOI: 10.1016/s0040-6090(00)01488-7

Google Scholar