Fatigue Crack Growth of Cold Worked 304L Stainless Steel in Gaseous Hydrogen

Article Preview

Abstract:

The fatigue crack growth behaviors of cold worked 304L stainless steel (SS) in air and gaseous hydrogen were evaluated, and further compared with the base plate. Cold rolling caused a rise in surface hardness and induced austenite to martensite transformation of 304L SS. Despite of testing environment, the fatigue crack growth rate (FCGR) of the cold worked specimen was higher than that of the base metal. Furthermore, both kinds of specimens were susceptible to hydrogen-accelerated crack growth. Mainly quasi-cleavage fracture related with the strain-induced martensite together with separation along twin boundaries accounted for the accelerated crack growth of the specimens in hydrogen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

140-144

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Angel: J. Iron Steel Inst. Vol. 117 (1954), pp.165-174.

Google Scholar

[2] J. R. Buckley and D. Hardie: Corr. Sci. Vol. 34 (1993), pp.93-107.

Google Scholar

[3] J. H. Huang and C. J. Altstetter: Metall. Trans. Vol. 22A (1991), pp.2605-2618.

Google Scholar

[4] J. Stolarz, N. Baffie, and T. Magnin: Mat. Sci. Eng. Vol. A319 (2001), pp.512-526.

Google Scholar

[5] G. Schuster and C. Altstetter: Metall. Trans. Vol. 14A (1983), p.2085-(2090).

Google Scholar

[6] L. W. Tsay, Y. C. Liu, M. C. Young and D. Y. Lin: Mat. Sci. Eng. Vol. A374 (2004), pp.204-210.

Google Scholar

[7] G. Schuster and C. Altstetter: Metall. Trans. Vol. 14A (1983), p.2077-(2084).

Google Scholar

[8] N. K. Kuromoto, A. S. Guimaraes and C. M. Lepienski: Mat. Sci. Eng. Vol. A381 (2004), pp.216-222.

Google Scholar

[9] D. Hardie and J. J. F. Butler: Mats. Sci. Tech. Vol. 6 (1990), pp.441-446.

Google Scholar

[10] S. Singh and C. J. Altstetter: Metall. Trans. Vol. 13A (1982), pp.1799-1808.

Google Scholar

[11] C. L. Briant: Metall. Trans. Vol. 10A (1979), pp.181-189.

Google Scholar

[12] B. Rohland, K. Eberle, R. Strobel, J. Scholta and J. Garche: Electrochim. Acta Vol. 43 (1998), pp.3841-3846.

DOI: 10.1016/s0013-4686(98)00144-3

Google Scholar

[13] J. M. Ogden, M. M. Steinbugler and T. G. Kreutz: J. Power sources Vol. 79 (1999), pp.143-168.

Google Scholar

[14] V. Ananthachar and J. J. Duffy: Solar Energy Vol. 78 (2005), pp.687-694.

Google Scholar

[15] A. Saxena and S. J. Hudak: Int. J. Fract. Vol. 14 (1998), pp.453-468.

Google Scholar