Li-York Chaos of Set-Valued Discrete Dynamical Systems Based on Semi-Group Actions

Article Preview

Abstract:

t is well known that a semi-groups action on a space could appear chaos phenomenon, like Li-York chaos and so on. Li-York chaos has important relations with topological transitivity and periodic point. This study analyzed metric space and its dinduced Hausdorff metric space. Letis a semi-group. We make continuously act on space. We study topological transitivity and betweenand. Some important results are presented which show that if is topological transitivity and periodicity (which means Li-York chaos at the same time), then the action of semi-grouponis Li-York chaos.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1778-1782

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Li T.Y. and Yorke J.A. Period three implies chaos. Amer. Math. Monthly, 1975, (82): 985-992.

DOI: 10.1080/00029890.1975.11994008

Google Scholar

[2] Devanney R. An Introduction to Chaotic Dynamical Systems , Reading MA : Addison Wesley, (1989).

Google Scholar

[3] Cairns G, Davis G, Elton D, et al. Chaotic Group Actions. Enseign. Math. 1995, 41: 123-133.

Google Scholar

[4] Yan Xinhua, Ren Yunli. Some Remarks on the Spatiotemporal Chaos Behavior of Semigroup Actions. Journal of Beijing Inst itute of Petro-chemical Technology. 2011, 19(1): 57-59.

Google Scholar

[5] SU Xun-li. On Li-Yorke pairs of semigroup actions. Pure and Applied Mathematics. 2010, 26(4): 608-613.

Google Scholar

[6] Su Xunli, Zhou youcheng. Chaotic semigroup actions. App1. Math.J. Chinese Univ. Ser. A 2004, 19(3): 292-296.

Google Scholar

[7] SU Xun-li. Chaotic group actions. Journal of Zhejiang University(Science Edition)·2005, 32(1): 13~1 6.

Google Scholar

[8] Peng Guan, Yun Qian. Sensitive Dependence on Initial of Chaoticsemi-group actions. 2012 8th International Conference on Natural Computation, 2012, 3: 957-959.

DOI: 10.1109/icnc.2012.6234653

Google Scholar

[9] Qin Xiaolong, Zhou Youcheng. Mixing property and chaos in set-valued dynamical systems. University Applied mathematics Journa, 2008, 23(1): 121-126.

Google Scholar

[10] Liao Gongfu, Wang Lidong. A kind of set-valued mapping transitivity, mixed and chaos. SCIENCE IN CHINA Ser. A Mathematics. 2005, 35(10): 1155-1161.

Google Scholar

[11] WANG Hu, i FAN Q in-jie. Topological Ergodicity, Entropy and Chaos of Set-valued Discrete Systems. JOURNAL OF JILIN UNIVERSITY ( SCIENCE EDITION ), 2007, 45(6): 903-906.

Google Scholar

[12] Naolekar A C, Sankaran P. Chaotic group actions onmanifolds . Topology Appl. , 2000, 107: 233~ 243.

DOI: 10.1016/s0166-8641(99)00113-3

Google Scholar

[13] W. Huang, X. Ye, Homeomorphisms with the whole compacta being scrambled sets, in: Ergosic Theory Dynamical Systems, to appear.

DOI: 10.1017/s0143385701001079

Google Scholar

[14] W. Huang, X. Ye, Devaney's chaos or 3-scattering implies Li-Yorke's chaos. Topology Appli., 2002, 117(3): 259-272.

DOI: 10.1016/s0166-8641(01)00025-6

Google Scholar

[15] Heriberto R F. A Note on Transitivity in Set-valued Discrete Systems [J]. Chaos , Solitions and Fractals, 2003, 17: 99-104.

DOI: 10.1016/s0960-0779(02)00406-x

Google Scholar

[16] Blanchard F, Host B, Maass A. Topological complexity. Ergod. Th. And Dynam. Sys., 2000, 20(3): 641-662.

DOI: 10.1017/s0143385700000341

Google Scholar

[17] Akin E, Glasner E. Residual properties and almost equicontinuit.J. d'Anal. Math., 2001, 84: 243-286.

DOI: 10.1007/bf02788112

Google Scholar

[18] Glasner E, Weiss B. Locally equicontinuous dynamical systems. Colloq. Math., 2000, 84-85 (2): 345-361.

DOI: 10.4064/cm-84/85-2-345-361

Google Scholar

[19] Yang R. Topological sequence complexity and mixing. Chinese . Ann. Math. Ser. A, 2004, 25 (6) : 809-816.

Google Scholar

[20] Huang W, Ye XD. Topological complexity, return times and weak disjointness. Ergod. Th. And Dynam. Sys., 2004, 24(3): 825-846.

DOI: 10.1017/s0143385703000543

Google Scholar

[21] Dou D, Ye XD, Zhang GH. Entropy sequences and maximal entropy sets. Nonlinearity, 2006, 19(1): 53-74.

DOI: 10.1088/0951-7715/19/1/004

Google Scholar

[22] Srinivasan Gopal . Ying-Cheng Lai. Inducing Chaos in MOSFET-Based Electronic Circuits Circuits Syst Signal Process (2009) 28: 535–545.

DOI: 10.1007/s00034-009-9100-0

Google Scholar

[23] HuoyunWang , Xiongwu Long , Heman Fu. Sensitivity and chaos of semigroup actions. Semigroup Forum (2012) 84: 81-90.

DOI: 10.1007/s00233-011-9335-5

Google Scholar