[1]
I. Podlubny, Fractional Differential Equations,. Academic Press, New York, (1999).
Google Scholar
[2]
R. L. Bagley, R. A. Calico, Fractional-order state equations for the control of viscoelastic structures,. Journal of Guidance, Control, and Dynamics, 1991, 14(2), pp.304-311.
DOI: 10.2514/3.20641
Google Scholar
[3]
H. H. Sun, A. A. Abdelwahad, B. Onaral, Linear approximation of transfer function with a pole of fractional power,. IEEE Trans Autom Control, 1984, 29, p.441.
DOI: 10.1109/tac.1984.1103551
Google Scholar
[4]
O. Heaviside, Electromagnetic Theory,. Chelsea, New York, (1971).
Google Scholar
[5]
T. T. Hartley, et al., Chaos in a fractional order Chua's system,. IEEE Trans CAS-I, 1995, 42(8) , pp.485-490.
Google Scholar
[6]
I. Grigorenko, E. Grigorenko, Chaotic Dynamics of the Fractional Lorenz System,. Phys Rev Lett, 2003, 91(3) , p.034101.
DOI: 10.1103/physrevlett.96.199902
Google Scholar
[7]
W. Ahmad, et cl., Fractional-order Wien-bridge oscillator,. Electron Lett, 2001, 37(18) , pp.1110-1112.
DOI: 10.1049/el:20010756
Google Scholar
[8]
G. Chen, T. Ueta, Yet another chaotic attractor,. Int J Bifur Chaos, 1999, 9(7), pp.1465-1466.
DOI: 10.1142/s0218127499001024
Google Scholar
[9]
C. G. Li, G. Chen, Synchronization in general complex dynamical networks with coupling delays,. Physica A, 2004, 343(15) , pp.263-278.
DOI: 10.1016/j.physa.2004.05.058
Google Scholar
[10]
C. G. LI, X. F. Liao, J. B. Yu, Synchronization of fractional order chaotic systems,. Phys Rev E, 2003, 68(6) , p.067203.
Google Scholar
[11]
C. G. Li. Phase and lag synchronization in coupled fractional order chaotic oscillators, Int J Mod Phys B, 2007, 21(30) , p.5159.
DOI: 10.1142/s0217979207038162
Google Scholar
[12]
C. G. Li, Projective synchronization in fractional order chaotic systems and its control, Progress of Theoretical Physics, 2006, 115(3) , pp.661-666.
DOI: 10.1143/ptp.115.661
Google Scholar
[13]
F. Chen, L. Xia, C. G. Li, Wavelet phase synchronization of Fractional-Order chaotic systems,. Chin Phys Lett, 2012, 29(7) , p.070501.
DOI: 10.1088/0256-307x/29/7/070501
Google Scholar
[14]
W. H. Deng, J. H. Lü, Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system, Phys Lett A, 2007, 369(5) , pp.438-443.
DOI: 10.1016/j.physleta.2007.04.112
Google Scholar
[15]
M. S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems, Physica D: Nonlinear Phenomena, 2008, 237(20) , pp.2628-2637.
DOI: 10.1016/j.physd.2008.03.037
Google Scholar
[16]
Y. Qi, G. Chen, M. A. Wyk, et al, A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system, Chaos Solitons Fractals, 2008, 38(3) , pp.705-721.
DOI: 10.1016/j.chaos.2007.01.029
Google Scholar
[17]
J. H. Lü, G. Chen, Generating multi-scroll chaotic attractors: theories, methods and applications, Int J Bifur Chaos, 2006, 16(4) , pp.775-858.
DOI: 10.1142/s0218127406015179
Google Scholar
[18]
G. Chen, T. Ueta, Yet another chaotic attractor,. Int J Bifur Chaos, 1999, 9(7), pp.1465-1466.
DOI: 10.1142/s0218127499001024
Google Scholar
[19]
J. H. Lü, G. Chen, A new chaotic attractor coined, Int J Bifurc Chaos, 2002, 12(3) , pp.659-661.
DOI: 10.1142/s0218127402004620
Google Scholar
[20]
J. H. Lü, G. Chen, et al, Bridge the gap between the Lorenz system and Chen system, Int J Bifurc Chaos, 2002, 12(12) , pp.2917-2926.
DOI: 10.1142/s021812740200631x
Google Scholar
[21]
O. E. Rossler, An equation for hyperchaos, Phys Lett A, 1979, 71(2-3) , pp.155-157.
Google Scholar
[22]
Cang S. J, et cl., A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system, Nonlinear Dyn, 2010, 59(3) , pp.515-527.
DOI: 10.1007/s11071-009-9558-0
Google Scholar
[23]
A. Charef, H. H. Sun, et al, Fractal system as represented by singularity function, IEEE Trans Autom Control, 1992, 37(9) , pp.1465-1470.
DOI: 10.1109/9.159595
Google Scholar
[24]
A. Wolf, et al, Determining Lyapunov exponents from a time series, Physica D, 1985, 16(3).
Google Scholar
[25]
C. G. Li, G. Chen, Coexisting chaotic attractors in a single neuron model with adapting feedback synapse, Chaos, Solitons and Fractals, 2005, 23(5) , pp.1599-1604.
DOI: 10.1016/s0960-0779(04)00379-0
Google Scholar