Dynamical Analysis of a Fractional Order Multi-Wing Hyper-Chaotic System

Article Preview

Abstract:

The dynamic behaviors of fractional-order systems have attracted increasing attentions recently. In this paper, a fractional-order four-wing hyper-chaotic system which has a rich variety of dynamic behaviors is proposed. We numerically study the dynamic behaviors of this fractional-order system with different conditions. Hyper-chaotic behaviors can be found in this system when the order is lower than 3 and four-wing hyper-chaotic attractors similar to integer order system can be generated. The lowest order for Hyper-chaos to exist in this system is 3.6 and the lowest order for chaos to exist in this system is 2.4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1792-1795

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Podlubny, Fractional Differential Equations,. Academic Press, New York, (1999).

Google Scholar

[2] R. L. Bagley, R. A. Calico, Fractional-order state equations for the control of viscoelastic structures,. Journal of Guidance, Control, and Dynamics, 1991, 14(2), pp.304-311.

DOI: 10.2514/3.20641

Google Scholar

[3] H. H. Sun, A. A. Abdelwahad, B. Onaral, Linear approximation of transfer function with a pole of fractional power,. IEEE Trans Autom Control, 1984, 29, p.441.

DOI: 10.1109/tac.1984.1103551

Google Scholar

[4] O. Heaviside, Electromagnetic Theory,. Chelsea, New York, (1971).

Google Scholar

[5] T. T. Hartley, et al., Chaos in a fractional order Chua's system,. IEEE Trans CAS-I, 1995, 42(8) , pp.485-490.

Google Scholar

[6] I. Grigorenko, E. Grigorenko, Chaotic Dynamics of the Fractional Lorenz System,. Phys Rev Lett, 2003, 91(3) , p.034101.

DOI: 10.1103/physrevlett.96.199902

Google Scholar

[7] W. Ahmad, et cl., Fractional-order Wien-bridge oscillator,. Electron Lett, 2001, 37(18) , pp.1110-1112.

DOI: 10.1049/el:20010756

Google Scholar

[8] G. Chen, T. Ueta, Yet another chaotic attractor,. Int J Bifur Chaos, 1999, 9(7), pp.1465-1466.

DOI: 10.1142/s0218127499001024

Google Scholar

[9] C. G. Li, G. Chen, Synchronization in general complex dynamical networks with coupling delays,. Physica A, 2004, 343(15) , pp.263-278.

DOI: 10.1016/j.physa.2004.05.058

Google Scholar

[10] C. G. LI, X. F. Liao, J. B. Yu, Synchronization of fractional order chaotic systems,. Phys Rev E, 2003, 68(6) , p.067203.

Google Scholar

[11] C. G. Li. Phase and lag synchronization in coupled fractional order chaotic oscillators, Int J Mod Phys B, 2007, 21(30) , p.5159.

DOI: 10.1142/s0217979207038162

Google Scholar

[12] C. G. Li, Projective synchronization in fractional order chaotic systems and its control, Progress of Theoretical Physics, 2006, 115(3) , pp.661-666.

DOI: 10.1143/ptp.115.661

Google Scholar

[13] F. Chen, L. Xia, C. G. Li, Wavelet phase synchronization of Fractional-Order chaotic systems,. Chin Phys Lett, 2012, 29(7) , p.070501.

DOI: 10.1088/0256-307x/29/7/070501

Google Scholar

[14] W. H. Deng, J. H. Lü, Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system, Phys Lett A, 2007, 369(5) , pp.438-443.

DOI: 10.1016/j.physleta.2007.04.112

Google Scholar

[15] M. S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems, Physica D: Nonlinear Phenomena, 2008, 237(20) , pp.2628-2637.

DOI: 10.1016/j.physd.2008.03.037

Google Scholar

[16] Y. Qi, G. Chen, M. A. Wyk, et al, A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system, Chaos Solitons Fractals, 2008, 38(3) , pp.705-721.

DOI: 10.1016/j.chaos.2007.01.029

Google Scholar

[17] J. H. Lü, G. Chen, Generating multi-scroll chaotic attractors: theories, methods and applications, Int J Bifur Chaos, 2006, 16(4) , pp.775-858.

DOI: 10.1142/s0218127406015179

Google Scholar

[18] G. Chen, T. Ueta, Yet another chaotic attractor,. Int J Bifur Chaos, 1999, 9(7), pp.1465-1466.

DOI: 10.1142/s0218127499001024

Google Scholar

[19] J. H. Lü, G. Chen, A new chaotic attractor coined, Int J Bifurc Chaos, 2002, 12(3) , pp.659-661.

DOI: 10.1142/s0218127402004620

Google Scholar

[20] J. H. Lü, G. Chen, et al, Bridge the gap between the Lorenz system and Chen system, Int J Bifurc Chaos, 2002, 12(12) , pp.2917-2926.

DOI: 10.1142/s021812740200631x

Google Scholar

[21] O. E. Rossler, An equation for hyperchaos, Phys Lett A, 1979, 71(2-3) , pp.155-157.

Google Scholar

[22] Cang S. J, et cl., A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system, Nonlinear Dyn, 2010, 59(3) , pp.515-527.

DOI: 10.1007/s11071-009-9558-0

Google Scholar

[23] A. Charef, H. H. Sun, et al, Fractal system as represented by singularity function, IEEE Trans Autom Control, 1992, 37(9) , pp.1465-1470.

DOI: 10.1109/9.159595

Google Scholar

[24] A. Wolf, et al, Determining Lyapunov exponents from a time series, Physica D, 1985, 16(3).

Google Scholar

[25] C. G. Li, G. Chen, Coexisting chaotic attractors in a single neuron model with adapting feedback synapse, Chaos, Solitons and Fractals, 2005, 23(5) , pp.1599-1604.

DOI: 10.1016/s0960-0779(04)00379-0

Google Scholar