[1]
K.S. Narendra, J. Balakrishnan, A common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Transactions on Automatic Control 39 (12) (1994) 2469–2471.
DOI: 10.1109/9.362846
Google Scholar
[2]
K. S. Narendra and J. Balakrishnan, A common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Transactions on Automatic Control, vol. 39, p.2469–2471, (1994).
DOI: 10.1109/9.362846
Google Scholar
[3]
R. Shorten and K. S. Narendra. Necessary and Sufficient Conditions For The Existence Of A Common Quadratic Lyapunov Function For Two Stable Linear Second Order Systems. In proceedings of American Control Conference, (1999).
DOI: 10.1109/acc.2000.878913
Google Scholar
[4]
Shorten R, Narendra K. Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time-invariant systems[J]. Int J of Adaptive Control and Signal Processing, 2003, 16(10): 709-728.
DOI: 10.1002/acs.719
Google Scholar
[5]
D. Liberzon, J.P. Hespanha, A.S. Morse, Stability of switched systems: a Lie-algebraic condition, Systems & Control Letters 37 (3) (1999) 117–122.
DOI: 10.1016/s0167-6911(99)00012-2
Google Scholar
[6]
D. Liberzon, A.S. Morse, Basic problems in stability and design of switched systems, IEEE Control Systems Magazine 19 (5) (1999) 59–70.
Google Scholar
[7]
G. Zhai, X. Xu, A commutation condition for stability analysis of switched linear descriptor systems, Nonlinear Analysis: Hybrid Systems 5 (2011) 383–393.
DOI: 10.1016/j.nahs.2011.02.002
Google Scholar
[8]
Jinhuan Wang, Daizhan Cheng, Xiaoming Hu, An extension of LaSalle's Invariance Principle for a class of switched linear systems, Systems & Control Letters 58 (2009) 754–758.
DOI: 10.1109/icca.2007.4376308
Google Scholar
[9]
Joao P. hespanha,A. Stephen Morse; Stability of Switched systems with average dwell time, Proceeding of the 38th conference on decision & control phoenix, Arizona USA December (1999).
DOI: 10.1109/cdc.1999.831330
Google Scholar