Deposition of Nitrogen-Doped TiO2 Films on Unheated Substrates Using DC Magnetron Sputtering Technique

Article Preview

Abstract:

The optimal process conditions for preparing nitrogen-doped titanium oxide (N-TiO2) films on unheated glass slides were investigated at various nitrogen (N2) flow rates. Films were found to exhibit significant polycrystalline structure, mainly the anatase phase with pyramid-like surface morphology. The X-ray photoelectron spectroscopy spectra confirmed the presence of the N2 within the TiO2 crystal lattice, resulting in a narrower band gap and in a red shift of the absorption into the visible-light region. N-doping of the TiO2 crystal lattice changed the oxidation state of Ti from Ti+4 to Ti+3, resulting in the formation of titanium oxynitride (TiOxNy) in the films. Our films displayed an enhanced ability to degrade a methyl blue solution illuminated with visible-light at wavelengths up to 500 nm. Among the samples tested, the N-TiO2 film that was deposited at a flow rate of 25 sccm N2 was found to be the most active photocatalyst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, T. N. Rao, D. A. Tryk, J. of Photochem. Photobiol. C: Photoc. Rev. 1 (2000) p.1.

Google Scholar

[2] G.S. Shao, X.J. Zhang, Z.Y. Yuan, Appl. Catal. B-Environ. 82 (2008) p.208.

Google Scholar

[3] J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen, J. Phys. Chem. B108 (2004) p.1230.

Google Scholar

[4] C.H. Kwon, H. Shin, J.H. Kim, W.S. Choi, K.H. Yoon, Mater. Chem. Phys. 86 (2004) p.78.

Google Scholar

[5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293 (2001) p.269.

Google Scholar

[6] Y. Suda, H. Kawasaki, T. Ueda, T. Ohshima, Thin Solid Films 453-454 (2004) p.162.

Google Scholar

[7] M.C. Yang, T. S., Yang, M. S. Wong, Thin Solid Films 469-470 (2004) p.1.

Google Scholar

[8] S.Z. Chen, P.Y. Zhang, D.M. Zhuang, W.P. Zhu, Catal. Comm. 5 (2004) p.677.

Google Scholar

[9] Z. Ding, X. Hu, P.L. Yue, G.Q. Lu, P.F. Greenfield, Catal. Today 68 (2001) p.173.

Google Scholar

[10] Y.H. Tseng, C.S. Kuo, C.H. Huang, Y.Y. Li, P.W. Chou, C.L. Cheng, M.S. Wong, Nanotechnology 17 (2006) p.1.

Google Scholar

[11] P.K. Song, Y. Irie, Y. Shigesato, Thin Solid Films 496 (2006) p.121.

Google Scholar

[12] M. Yamagishi, S. Kuriki, P.K. Song, Y. Shigesato, Thin Solid Films 442 (2003) 227-231.

DOI: 10.1016/s0040-6090(03)00987-8

Google Scholar

[13] J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, L. Zhang, Appl. Catal. B-Environ. 62 (2006) p.329.

Google Scholar

[14] L. Miao, S. Tanemura, S. Toh, K. Kaneko, M. Tanemura, J. of Crystal Growth 264 (2004) p.246.

DOI: 10.1016/j.jcrysgro.2003.12.027

Google Scholar

[15] T.L. Hanley, V. Luca, I. Pickering, R.F. Howe, J. Phys. Chem. B 106 (2002) p.1153.

Google Scholar

[16] A. Rampaul, I.P. Parkin, S.A. O'Neill, J. DeSouza, A. Mills, N. Elliott, Polyhedron 22 (2003) p.35.

Google Scholar

[17] Y. Yang, X.J. Li, J.T. Chen, L.Y. Wang, J. Photochem. Photobiol. A-Chem. 163 (2004) p.517.

Google Scholar

[18] S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Thin Solid Films 392 (2001) p.338.

Google Scholar

[19] N.L. Wu, M.S. Lee, Z.J. Pon, J.Z. Hsu, J. Photochem. Photobiol. A-Chem. 163 (2004) p.277.

Google Scholar

[20] S.C. Jung, S.J. Kim, N. Imaishi, Y.I. Cho, Appl. Catal. B-Environ. 55 (2005) p.253.

Google Scholar

[21] N.C. Saha, H.G. Tompkins, J. Appl. Phys. 72 (1992) p.3072.

Google Scholar

[22] S. Tanemura, L. Miao, H. Watanabe, Y. Mori, Appl. Surf. Sci. 244 (2005) p.546.

Google Scholar

[23] G. -S. Herman, Y. Gao, T.T. Tran, J. Osterwalder, Surf. Sci. 447 (2000) p.201.

Google Scholar

[24] F.H. Lu, S.P. Feng, H.Y. Chen, J.K. Li, Thin Solid Films 375 (2000) p.123.

Google Scholar

[25] I. Milošev, H. -H. Strehblow, B. Navinšek, Surf. Coat. Tech. 74-75 (1995) p.897.

Google Scholar