Structural Characteristics and Photocatalytic Capabilities of Visible-Light Enabled Columnar TiO2 Films

Article Preview

Abstract:

Visible-light enabled titanium oxide (TiO2) films deposited on indium tin oxide (ITO) substrates are investigated for their capabilities to both pollution control and splitting water on hydrogen production. Three types of TiO2 films are prepared at different levels of doping nitrogen (N) and carbon (C) and sputtering power. All three samples are similar in morphological and microstructural features, but differ in their interfacial phase and dopants. For the N,C-codoped TiO2 film prepared at a higher sputtering power, tin ions can permeate into the growing TiO2 film from the ITO substrate and promote the formation of crystalline Ti1-xSnxO2 layer. It shows the highest photocatalytic oxidation rate over methylene blue (MB) solution under ultraviolet and blue light irradiation, respectively. This is ascribed to the photosensitized carbon on the columnar grains, leading an increase in the MB adsorption capacity and light harvesting efficiency. Conversely, the N-TiO2 film prepared at a lower power exhibits the highest photocurrent density of which a higher Schottky barrier formed at the TiO2/ITO interface. A hydrogen yield rate of 0.25 μmol/cm2 h is obtained under blue light irradiation. These suggest that the interfacial properties of TiO2/ITO film and C-doping truly control its photocatalytic capabilities in addition to the well-known surface states.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-84

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Ma, J. -B. Qiu, Y. -A. Cao, Z. -S. Quan and J. -N. Yao, Chemosphere Vol. 44 (2001), p.1087.

Google Scholar

[2] H. Irie, H. Mori and K. Hashimoto, Vacuum Vol. 74 (2004), p.625.

Google Scholar

[3] W. Dai, X. Wang, P. Liu, Y. Xu, G. Li and X. Fu, J. Phys. Chem. B Vol. 110 (2006), p.13470.

Google Scholar

[4] K.R. Wu, C.W. Yeh, C.H. Hung, T.P. Cho and W.J. Liu, J. Nanosci. Nanotechnol. Vol. 9 (2009), p.3433.

Google Scholar

[5] K.R. Wu, C.H. Hung and M.H. Tsai, Appl. Catal. B-Environ. Vol. 92 (2009), p.357.

Google Scholar

[6] F.R. Sensato, R. Custodio, Elson Longo, A. Beltrán and J. Andrés, Catal. Today Vol. 85 (2003), p.145.

Google Scholar

[7] S. Mahanty, S. Roy and S. Sen, J. Cryst. Growth Vol. 261 (2004), p.77.

Google Scholar

[8] M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano and M. Inagaki, Appl. Catal. B-Environ Vol. 49 (2004), p.227.

Google Scholar

[9] M. Inagaki, R. Nonaka, B. Tryba and A.W. Morawski, Chemosphere Vol. 64 (2006), p.437.

Google Scholar

[10] A. Brudnik, A. Gorzkowska-Sobas, E. Pamuła, M. Radecka and K. Zakrzewska, J. Power Sources Vol. 173 (2007), p.774.

DOI: 10.1016/j.jpowsour.2007.05.084

Google Scholar

[11] O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke and D. Glöβ, Surf. Coat. Technol. Vol. 180 (2004), p.538.

Google Scholar

[12] M. Radecka, M. Rekas, A. Trenczek-Zajac and K. Zakrzewska, J. Power Sources Vol. 181 (2008), p.46.

DOI: 10.1016/j.jpowsour.2007.10.082

Google Scholar

[13] O. Zywitzki, T. Modes, P. Frach and D. Glöss, Surf. Coat. Technol. Vol. 202 (2008), p.2488.

Google Scholar

[14] J. Rodriguez, M. Gomez, S. -E. Lindquist and C.G. Granqvist, Thin Solid Films Vol. 360 (2000), 250.

Google Scholar

[15] K.R. Wu and T.P. Cho, Appl. Catal. B-Environ. Vol. 80 (2008), p.313.

Google Scholar

[16] V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, R.A. Caruso, D.G. Shchukin and B.C. Muddle, Phys. Rev. Vol. B 71 (2005), p.184302.

Google Scholar

[17] M. Kitano, K. Tsujimaru and M. Anpo, Appl. Catal. A-Gen., Vol. 314 (2006), p.179.

Google Scholar

[18] H. Fark, J. Chevallier and K. Reichelt, Thin Solid Films Vol. 100 (1983), p.193.

Google Scholar

[19] L. Miao, S. Tanemura, H. Watanabe, Y. Mori, K. Kaneko and S. Toh, J. Cryst. Growth Vol. 260 (2004), p.118.

Google Scholar

[20] S.H. Wang, T.K. Chen, K.K. Rao and M.S. Wong, Appl. Catal. B-Environ. Vol. 76 (2007), p.328.

Google Scholar

[21] X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang and K. Klabunde, J. Catal. Vol. 260 (2008), 128.

Google Scholar

[22] A. Hagfeldt, H. Lindström, S. Södergren and S.E. Lindquist, J. Electroanal. Chem. Vol. 381 (1995), p.39.

Google Scholar

[23] G.R. Torres, T. Lindgren, J. Lu, C.G. Granqvist and S.E. Lindquist, J. Phys. Chem. B Vol. 108 (2004), p.5995.

Google Scholar

[24] H. Yu, X. Quan, S. Chen and H. Zhao, J. Phys. Chem. C Vol. 111 (2007), p.12987.

Google Scholar

[25] B. Gao, C. Peng, G.Z. Chen and G.L. Puma, Appl. Catal. B-Environ. Vol. 85 (2008), p.17.

Google Scholar

[26] H. Chen, S. Chen, X. Quan, H. Yu, H. Zhao and Y. Zhang, J. Phys. Chem. C- Vol. 112 (2008), p.9285.

Google Scholar

[27] M.J. Alam and D.C. Cameron, Thin Solid Films Vol. 420 (2002), 76.

Google Scholar

[28] J. Lin, J.C. Yu, D. Lo and S.K. Lam, J. Catal. Vol. 183 (1999), p.368.

Google Scholar