Improved Packing Representation Model for the Orthogonal Packing Problem

Article Preview

Abstract:

The multidimensional NP-hard orthogonal bin packing problem is considered in the article. Usually the problem is solved using heuristic algorithms of discrete optimization which optimize a selection sequence of objects to be packed in containers. The quality and speed of getting the resulting packing for a given sequence of placing objects is determined by the used packing representation model. In the article presented a new packing representation model for constructing the orthogonal packing. The proposed model of potential containers describes all residual free spaces of containers in packing. The developed model is investigated on well-known standard benchmarks of three-dimensional orthogonal bin packing problem. The model can be used in development of applied software for the optimal allocation of orthogonal resources.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

591-595

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Gary, D. Johnson: Computers Intractability: a Guide to the Theory of NP-completeness (W.H. Freeman, San Francisco 1979).

Google Scholar

[2] A. Lodi, S. Martello, M. Monaci: Two-dimensional packing problems: A survey. European journal of operational research. Vol. 141: 2 (2002), pp.241-252.

DOI: 10.1016/s0377-2217(02)00123-6

Google Scholar

[3] Y. Wu, W-K. Li, M. Goh, R. de Souza: Three dimensional bin packing problem with variable bin height. European journal of operational research. Vol. 202: 2 (2010), pp.347-355.

DOI: 10.1016/j.ejor.2009.05.040

Google Scholar

[4] G. Wascher, H. HauBner, H. Schumann: An improved typology of cutting and packing problems. European journal of operational research. Vol. 183: 3 (2007), pp.1109-1130.

DOI: 10.1016/j.ejor.2005.12.047

Google Scholar

[5] V.A. Chekanin, A.V. Chekanin: Effective models of representations of orthogonal resources in solving the packing problem. Information and Control Systems (Informatsionno-Upravlyayushchiye systemy). Vol. 5 (2012), pp.29-32, in Russian.

Google Scholar

[6] V.A. Chekanin: The effective solving of the two-dimensional packing task of rectangular objects. Jouranl of computer and information technology (Vestnik komp'yuternykh i informatsionnykh tekhnologiy). Vol. 6 (2011), pp.35-39, in Russian.

Google Scholar

[7] V.A. Chekanin, A.V. Chekanin: Optimization of the solution of the orthogonal packing problem. Applied informatics (Prikladnaya informatika). Vol. 4 (2012), pp.55-62, in Russian.

Google Scholar

[8] S. Martello, D. Pisinger, D. Vigo: The three-dimensional bin packing problem. Operations Research. Vol. 48: 2 (2000), pp.256-267.

DOI: 10.1287/opre.48.2.256.12386

Google Scholar

[9] O. Faroe, D. Pisinger, M. Zachariasen: Guided local search for the three-dimensional bin packing problem. INFORMS, Journal on Computing. Vol. 15: 3 (2003), pp.267-283.

DOI: 10.1287/ijoc.15.3.267.16080

Google Scholar

[10] T.G. Crainic, G. Perboli, R. Tadei: Extreme point-based heuristics for three-dimensional bin packing. INFORMS, Journal on Computing. Vol. 20: 3 (2008), pp.368-384.

DOI: 10.1287/ijoc.1070.0250

Google Scholar

[11] A. Lodi, S. Martello, D. Vigo: Heuristic algorithms for the three-dimensional bin packing problem. European Journal of Operational Research. Vol. 141: 2 (2002), pp.410-420.

DOI: 10.1016/s0377-2217(02)00134-0

Google Scholar

[12] M.A. Boschetti: New lower bounds for the finite three-dimensional bin packing problem. Discrete Applied Mathematics. Vol. 140 (2004), pp.241-258.

DOI: 10.1016/j.dam.2003.08.004

Google Scholar