[1]
Bejan, A, : Advanced Engineering Thermodynamics, Wiley-Interscience Publication, New York, 758 (1987).
Google Scholar
[2]
P. Chambadal, Les CentralesNuclearies, Armand Colin, Paris, 1957, p.41–58.
Google Scholar
[3]
I.I. Novikov, AtommayaEnergiya 3 409; English translation: J. Nuclear Energy II 7 125(1957).
Google Scholar
[4]
F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Amer. J. Phys. 43, 22–24(1975).
DOI: 10.1119/1.10023
Google Scholar
[5]
F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69, 7465 (1991).
DOI: 10.1063/1.347562
Google Scholar
[6]
Yan, Z. J.: Comment on An ecological optimization criterion for finite-time heat engines, J. Appl. Phys., 73, 3583 (1993).
DOI: 10.1063/1.354041
Google Scholar
[7]
Y. Ust, Ecological performance analysis and optimization of power generation systems, PhD thesis, Progress Report, Yildiz Technical University, Turkey, (2004) (in Turkish).
Google Scholar
[8]
Y. Ust, B. Sahin, O.S. Sogut, Performance analysis and optimization of an irreversible dual cycle based on ecological coefficient of performance criterion, Appl. Energy (2005).
DOI: 10.1016/j.apenergy.2004.08.005
Google Scholar
[9]
Ust Y., Şahin, B., Kodal, A., Performance of irreversible Brayton heat engine based on ecological coefficient of performance criterion, Int. J., 2, 94-101 (2005).
DOI: 10.1016/j.ijthermalsci.2005.04.005
Google Scholar