Simulations of Structural Transition of Ti75Al25 under High Pressure

Article Preview

Abstract:

The structural transitions of the rapidly cooled Ti75Al25 under high pressures were studied by using molecular dynamics simulations. This work gives the structural properties, including the potential energy, pair-correlation function, Honeycutt-Andersen (HA) and Voronoi indices, and temperature dependence. Our results indicated that the liquid Ti75Al25 was frozen into glass state at the temperature about 300 K under different pressures during the same quenching processes. With increasing of pressure, the glass transformation temperature (Tg) become high. The icosahedral and defect icosahedral clusters increase as the temperature decreases under different pressures. But the icosahedral cluster increases with the increasing pressure and defect icosahedral clusters keeps invariability at 300 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

708-712

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue, Prog. Mater. Sci. 43 (1998) 365.

Google Scholar

[2] J. Millett, G. T. R. Gray III, and N. Bourne, J. Appl. Phys. 88 (2000) 3290.

Google Scholar

[3] G. Sauthoff, Intermetallics, 8 (2000) 1101.

Google Scholar

[4] V. A. Luchnikov, N. N. Medvedev, Yu. I. Naberukhin, and V. N. Novikov, Phys. Rev. B 51 (1995) 15569.

Google Scholar

[5] Z. D. Sha, Y. P. Feng, and Y. Li, Appl. Phys. Lett. 96 (2010) 061903.

Google Scholar

[6] Z. D. Sha, R. Q. Wu, Y. H. Lu, L. Shen, M. Yang, Y. Q. Cai, Y. P. Feng, and Y. Li, J. Appl. Phys. 105 (2009) 043521.

Google Scholar

[7] H. L. Peng, M. Z. Li, W. H. Wang, C. Z. Wang and K. M. Ho, Appl. Phys. Lett 96 (2010) 021901.

Google Scholar

[8] W.H. Wang, T. Okada, P. Wen, X.L. Wang, M.X. Pan, D.Q. Zhao, W. Utsumi, Phys. Rev. B 68 (2003)184105.

Google Scholar

[9] Y. Zhang, L. Wang, W. Wang, X. Liu, X. Tian, P. Zhang, Phys. Lett. A 320 (2004) 452.

Google Scholar

[10] S. Kazanc, Phys. Lett. A 365 (2007) 473.

Google Scholar

[11] [S. Kazanc, F.A. Celik, A.K. Yildiz, S. Ozgen, Comput. Mater. Sci. 40 (2007) 179.

Google Scholar

[12] L. Qi, L.F. Dong, S.L. Zhang, X.B. Chen, R.P. Liu, P.K. Liaw, Phys. Lett. A 372 (2008) 708.

Google Scholar

[13] B. J. Yang, J. H. Yao, J. Zhang, H. W. Yang, J. Q. Wang, and E. Ma, Scripta Mater. 61 (2009) 423.

Google Scholar

[14] L. C. Zhuo, S. J. Pang, H. Wang, and T. Zhang, Chin. Phys. Lett. 26 (2009) 066402.

Google Scholar

[15] N. Mattern, A. Schöps, U. Kühn, J. Acker, O. Khvostikova, and J. Eckert, Non-Cryst. Solids 354 (2008) 1054.

DOI: 10.1016/j.jnoncrysol.2007.08.035

Google Scholar

[16] G. Duan, D. H. Xu, Q. Zhang, G. Y. Zhang, T. Cagin, W. L. Johnson, and W. A. Goddard, Phys. Rev. B 71 (2005) 224208.

Google Scholar

[17] M. S. Daw, and M. I. Baskes, Phys. Rev. Lett. 50 (1983) 1285.

Google Scholar

[18] M. S. Daw, S. M. Foiles and M. I. Baskes, Mater. Sci. Rep. 9 (1993) 251.

Google Scholar

[19] R. R. Zope and Y. Mishin, Phys. Rev. B 68 (2003) 024102.

Google Scholar

[20] D. Honeycutt and H. C. Andersen, J. Phys. Chem. 91 (1987) 4950.

Google Scholar

[21] Pei Q X, Lu C, and Lee H P. J. Phys. Condens. Matter 2005 17 1493.

Google Scholar

[22] R. R. Zope and Y. Mishin, Phys. Rev. B 68 (2003) 024102.

Google Scholar

[23] G. Shao, J. Appl. Phys. 88 (2000) 4443.

Google Scholar

[24] A. Inoue, Acta Mater. 48 (2000) 279.

Google Scholar

[25] K. F. Kelton, A. K. Gangopadhyay, T. H. Kim, and G. W. Lee, J. Non-Cryst. Solids 352 (2006)5318.

Google Scholar

[26] G. W. Lee, A. K. Gangopadhyay, K. F. Kelton, R. W. Hyers, T. J. Rathz, J. R. Rogers, and D. S. Robinson, Phys. Rev. Lett. 93 (2004) 037802.

Google Scholar