[1]
Wenping. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, D. J. Atkinson, Overview of Electric Machine Technologies Used for More Electric Aircraft (MEA), IEEE Trans. Ind. Electron., vol. 59, no. 9, p.3523 – 3531, Sept. 2012.
DOI: 10.1109/tie.2011.2165453
Google Scholar
[2]
S. De,M. Rajne,S. Poosapati, C. Patel, K. Gopakumar, Low-inductance axial flux BLDC machine drive for more electric aircraft, IET Power Electron., vol. 5, no. 1, p.124 – 133, January 2012.
DOI: 10.1049/iet-pel.2010.0329
Google Scholar
[3]
J. A. Rosero, J. A. Ortega, E. Aldabas, L. Romeral, Moving towards a more electric aircraft, IEEE Aerosp. Electron. Syst. Maga., vol. 22, no. 3, pp.3-9, March . (2007).
DOI: 10.1109/maes.2007.340500
Google Scholar
[4]
S. Haggag, D. Alstrom, S. Cetinkunt, Modeling, control, and validation of an electro-hydraulic steerby-wire system for articulated vehicle applications, IEEE Transactions on Mechatronics, Vol. 10, No. 6, pp.688-692, (2005).
DOI: 10.1109/tmech.2005.859838
Google Scholar
[5]
M. Ruiqing, L. Weiguo, L. Guangzhao, The balanced current control of dual-redundancy permanent magnetic brushless DC machine, in Proc. International Conference on Electrical Machines and Systems, pp.475-479. Najing, China, (2005).
DOI: 10.1109/icems.2005.202573
Google Scholar
[6]
S. Croke, J. Herrenschmidt, More electric initiative power-by-wire actuation alternatives, in Proc. IEEE National Aerospace & Electronics Conference. pp.1338-1346, New York, USA, (1994).
DOI: 10.1109/naecon.1994.332886
Google Scholar
[7]
S. Habbi, A. Goldenberg, Design of a new high performance electro hydraulic actuator, in Proc. IEEE International Conference on Advanced Intelligent Mechatronics Proceedings. pp.227-232, New York, USA, (1999).
Google Scholar
[8]
L. Rong, L. Weiguo and M. Ruiqing, Research of current symmetry on dual-redundancy, in Proc. International Conference on Electrical Machines and Systems, pp.4-6. Najing, China, (2005).
Google Scholar
[9]
D. Huifen, Z. Yuanjun and Z. Yaozhong, The fault-tolerant operation of Electro-Mechanical Actuator (EMA) system with the hybrid redundancy structure, " WCICA, 08, 2008: 9379-9384.
Google Scholar
[10]
W. Jiabin, K. Atallah and D. Howe, Optimal Torque Control of Fault-Tolerant Permanent Magnet Brushless Machines, IEEE Transactions on Magnetics, Vol. 39, No. 5, pp.2962-2964, (2003).
DOI: 10.1109/tmag.2003.816707
Google Scholar
[11]
K. Atallah, W. Jiabin and D. Howe, Torque-Ripple Minimization in Modular Permanent-Magnet Brushless Machines, IEEE Transactions on Industry Applications, Vol. 39, No. 6, pp.1689-1695, (2003).
DOI: 10.1109/tia.2003.818986
Google Scholar
[12]
D. Jason, K. Atallah, W. Jiabin and D. Howe, Effect of Optimal Torque Control on Rotor Loss of Fault-Tolerant Permanent-Magnet Brushless Machines, IEEE Transaction on Magnetics, Vol. 38, No. 5, pp.3291-3293, (2002).
DOI: 10.1109/tmag.2002.802294
Google Scholar
[13]
Cochoy, U.B. Carl, Redundant hybrid actuation concept for primary flight controls, Mechatronik (2005) 483–495, VDI-Berichte Nr. 1892.
Google Scholar
[14]
Olaf Cochoy, Susan Hanke, Udo B. Carl. Concepts for position and load control for hybrid actuation in primary flight controls. Aerospace Science and Technology 11(2007) 194-201.
DOI: 10.1016/j.ast.2006.09.004
Google Scholar
[15]
Olaf Cochoy, Udo B. Carl, Frank Thielecke. Integration and control of electromechanical and electrohydraulic actuators in a hybrid primary flight control architecture. Recent Advances in Aerospace Actuation System and Components, June 13-15, 2007, Toulouse, France.
Google Scholar