[1]
A. R. von Hippel. Dielectrics and Waves. Wiley, New York. 1954, Sect. II. 31; G. Papanicolaou. Wave Propagation in Complex Media. Springer, New York. (1998).
Google Scholar
[2]
D. E. Aspnes. Local-Field Effects and Effective-Medium Theory: A Microscopic Perspective. Am. J. Phys. 1982, 50: 704-709.
DOI: 10.1119/1.12734
Google Scholar
[3]
K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Bronggersma, Z. S. Yanovitskaya. Low Dielectric Constant Materials for Microelectronics. J. Appl. Phys. 2003, 93: 8793-8841.
DOI: 10.1063/1.1567460
Google Scholar
[4]
T. Homma. Low Dielectric Constant Materials and Methods For Interlayer Dielectric Films in Ultra Large Scale Integrated Circuit Multi Level Interconnections. Material Science and Engineering. 1998, 23(6): 243-285.
DOI: 10.1016/s0927-796x(98)00012-6
Google Scholar
[5]
H.G. Peng, D. Z. Chi, W. D. Wang, J. H. Li, K.Y. Zeng, R. S. Vallery, W. E. Frieze, M. A. Skalsey, D. W. Gidley, A. F. Yee. Pore Sealing by NH3 Plasma Treatment of Porous Low Dielectric Constant Films. Journal of the Electrochemical Society. 2007, 154: 85-94.
DOI: 10.1149/1.2435625
Google Scholar
[6]
H. Shi, J. Bao, R. S. Smith, H. Huang, J. Liu, P. S. Ho, M. L. McSwiney, M. Moinpour, G. M. Kloster. Origin of Dielectric Loss Induced by Oxygen Plasma on Organo-Silicate Glass Low-k Dielectrics. Applied Physic Letters. 2008, 93.
DOI: 10.1063/1.3026528
Google Scholar
[7]
K. P. Murali, S. Rajesh, O. Prakash, A. R. Kulkami, R. Ratheesh. Comparison of Alumina and Magnesia Filled PTFE Composites for Microwave Substrate Applications. Materials Chemistry and Physics. 2009, 113: 290-295.
DOI: 10.1016/j.matchemphys.2008.07.089
Google Scholar
[8]
Y. Li, M. Zhao, Q. Zhou, B. Geng. Research on Arc Ablation Resistance of PTFE Improved by Introducing Inorganic Filler. 2008 International Symposium on Elecrical Insulating Materials. 2008, 259-62.
DOI: 10.1109/iseim.2008.4664545
Google Scholar
[9]
H. Chen, L. Xie. Ultra-Low-k Polyin1ide Hybrid Films via Copolymerization of Polyimide and Polyoxometalates. J. Mater. Chem. 2007, 17(13): l258-1261.
DOI: 10.1039/b618910e
Google Scholar
[10]
Z. He, L. Guo. Novel Silica Tube/Polyimide Composite Films with Variable Low Dielectric Constant. Adv. Mater. 2005, 17(8): l056-l059.
Google Scholar
[11]
B. Lee, Y. H. Park, Y. T. Hwang, W. Oh, J. Yoon, M. Ree. Ultralow-k Nanoporous Organosilicate Dielectric Films Imprinted with Dendritic Spheres. Nat. Mater. 2005, 4: 147-151.
DOI: 10.1038/nmat1291
Google Scholar
[12]
B. Lee, W. Oh, Y. Hwang, Y. -H. Park, J. Yoon, K. S. Jin, K. Heo, J. Kim, K. -W. Kim, M. Ree. Imprinting Well-Controlled Nanopores in Organosilicate Dielectric films: Triethoxysilyl-Modified Six-Armed Poly(e-caprolactone) and Its Chemical Hybridization with an Organosilicate Precursor. Adv. Mater. 2005, 17: 696-701.
DOI: 10.1002/adma.200400919
Google Scholar
[13]
P. S. Baskara, J. K. Liu. Low Dielectric Constant Mesoporous Silica Films Through Molecularly Templated Synthesis. Adv. Mater. 2000, 12(4): 29l-294.
DOI: 10.1002/(sici)1521-4095(200002)12:4<291::aid-adma291>3.0.co;2-p
Google Scholar
[14]
W. Ro Hyun, K. J. Kim. Novel Inorganic-Organic Hybrid Block Copolymers as Pore Generators for Nanoporous Ultralow Dielectric-Constant Films. Macromolecules. 2005, 38(3): l03l-l034.
DOI: 10.1021/ma048353w.s001
Google Scholar
[15]
Shen Jun, Zhu Yumei, Lin Xuejing, Wu Guangming, Zhou Bin, Ni Xingyuan, Yao Lanfang, Wang Guoqing, Wang Peiqing, Wang Qingfeng, Niu Xixian. Low Dielectric Constant Nanoporous Silica Films [J]. Rare metal materials and engineering. 2010, 39(2): 31-35.
DOI: 10.1109/inec.2008.4585635
Google Scholar
[16]
WANG Jiabang, ZHANG Guoquan. Research progress of porous materials with low dielectric constant [J]. Journal of Zhejiang University ( Engineering Science). 2009, 43(5): 957-967.
Google Scholar
[17]
H. J. Lee, C. L. Soles, D. W. Liu, B. J. Bauer, E. K. Lin, W. L. Wu. Structural Characteristics of Methylsilsesquioxane Based Porous Low-k Thin Films Fabricated with Increasing Cross-Linked Particle Porogen Loading. J. Appl. Phys. 2006, 100.
DOI: 10.1063/1.2337772
Google Scholar
[18]
H. S. Li, J. G. Liu. Synthesis and Characterization of Novel Fluorinated Aromatic Polyimides derived from 1, l-Bis (4-Amino-3, 5-Dimethylpheny1)-1-(3, 5.
Google Scholar
[19]
Ditrifluoromethylpheny1)-2, 2, 2-Tfifluoroethane and Various Aromatic Dianhydrides. J. Polym. Sci. Part A: Polym. Chem. 2006, 44(8): 2665-2674.
Google Scholar
[20]
Wang Mingcong, Yin Yif ei, An S han, Luo Yong. Production and Application of Superfine Silica Dioxide. Production and application of organic silica materials. 1997, 5: 11-12.
Google Scholar
[21]
K. Maex, M. R. Baklanov, D. Shamiryan, F. Lacopi, S. H. Brongersma, Z.S. Yanovitskaya. Low Dielectric Constant Materials for Microelecronics. Journal of Applied Physics. 2003, 93: 8793-8841.
DOI: 10.1063/1.1567460
Google Scholar
[22]
H. Q. Li, H. C. Kim. Facile Fabrication of Hollow Silica and Ttitania Microspheres Using Plasma-Treated Polystyrene Spheres as Sacrificial Templates. Langmuir. 2008, 24: 10552-10556.
DOI: 10.1021/la801686z
Google Scholar
[23]
H. J. Hwang, S. W. Hsu, C. L. Chung, C. S. Wang. Low Dielectric Epoxy Resins from Dicyclopentadiene-Containing Poly(phenylene oxide) Novolac Cured with Dicyclopentadiene Containing Epoxy. Reactive and Functional Polymers. 2008, 68: 1185-1193.
DOI: 10.1016/j.reactfunctpolym.2008.05.001
Google Scholar
[24]
H. J. Hwang, S. W. Hsu, C. S. Wang. Low Dielectric Thermoset from Redistributed Poly(phenylene oxide). Journal of Macromolecular Science Part A- Pure and Applied Chemistry. 2008, 45: 1049-1056.
DOI: 10.1080/10601320802458046
Google Scholar
[25]
D. Ma, T. A. Hugener, R. W. Siegel, A. Christerson, E. Mårtensson, C. Önneby, L. S. Schadler. Influence of Nanoparticle Surface Modification on the Electrical Behaviour of Polyethylene Nanocomposites. Nanotechnology. 2005, 16: 724-731.
DOI: 10.1088/0957-4484/16/6/016
Google Scholar