Finite Element Modeling of Sound Transmission Based on Micro-Computer Tomography for Human Ear

Article Preview

Abstract:

An accurate finite element (FE) model of the human ear can help in understanding the physiological mechanismof human ear and facilitate the design of implantable hearing devices. In this paper,a FE modelof the human ear consisting of the external ear canal, middle ear, and cochlea was developed. The geometry of the external ear canal and middle ear model was based on a fresh specimen of human temporal boneviamicro-computer tomography imaging. A harmonic sound pressure of 90 dB SPL was applied in the ear canal and the multi-field coupled FE analysis was conductedamong the ear canal air, cochlea fluid, and middle ear and cochlea structures. The results were compared with the established physiological data. The satisfactory agreements between the model and published experimental measurementsindicate the middle ear and cochlea functions can be well simulated and further application in terms of human ear can be achieved by the model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

593-601

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Bornitz, H. -J. Hardtke, and T. Zahnert, Evaluation of implantable actuators by means of a middle ear simulation model, Hearing Research. 263(1) (2010) 145-151.

DOI: 10.1016/j.heares.2010.02.007

Google Scholar

[2] R.Z. Gan, C. Dai, X. Wang, D. Nakmali, et al., A totally implantable hearing system–Design and function characterization in 3D computational model and temporal bones, Hearing Research. 263(1) (2010) 138-144.

DOI: 10.1016/j.heares.2009.09.003

Google Scholar

[3] X. Wang, Y. Hu, Z. Wang, and H. Shi, Finite element analysis of the coupling between ossicular chain and mass loading for evaluation of implantable hearing device, Hearing research. 280(1) (2011) 48-57.

DOI: 10.1016/j.heares.2011.04.012

Google Scholar

[4] H. Liu, Z. Rao, and N. Ta, Finite element analysis of the effects of a floating mass transducer on the performance of a middle ear implant, Journal of Medical Engineering & Technology. 34(5-6) (2010) 316-323.

DOI: 10.3109/03091902.2010.481033

Google Scholar

[5] Q. Sun, K. -H. Chang, K.J. Dormer, R.K. Dyer Jr, et al., An advanced computer-aided geometric modeling and fabrication method for human middle ear, Medical engineering & physics. 24(9) (2002) 595-606.

DOI: 10.1016/s1350-4533(02)00045-0

Google Scholar

[6] Q. Sun, R. Gan, K. -H. Chang, and K. Dormer, Computer-integrated finite element modeling of human middle ear, Biomechanics and Modeling in Mechanobiology. 1(2) (2002) 109-122.

DOI: 10.1007/s10237-002-0014-z

Google Scholar

[7] R.Z. Gan, Q. Sun, B. Feng, and M.W. Wood, Acoustic–structural coupled finite element analysis for sound transmission in human ear—Pressure distributions, Medical engineering & physics. 28(5) (2006) 395-404.

DOI: 10.1016/j.medengphy.2005.07.018

Google Scholar

[8] T. Koike, H. Wada, and T. Kobayashi, Modeling of the human middle ear using the finite-element method, The Journal of the Acoustical Society of America. 111 (2002) 1306.

DOI: 10.1121/1.1451073

Google Scholar

[9] J.P. Tuck-Lee, P.M. Pinsky, C.R. Steele, and S. Puria, Finite element modeling of acousto-mechanical coupling in the cat middle ear, The Journal of the Acoustical Society of America. 124 (2008) 348.

DOI: 10.1121/1.2912438

Google Scholar

[10] R. Aibara, J.T. Welsh, S. Puria, and R.L. Goode, Human middle-ear sound transfer function and cochlear input impedance, Hearing research. 152(1) (2001) 100-109.

DOI: 10.1016/s0378-5955(00)00240-9

Google Scholar

[11] S. Puria, W.T. Peake, and J.J. Rosowski, Sound-pressure measurements in the cochlear vestibule of human-cadaver ears, The Journal of the Acoustical Society of America. 101 (1997)2754.

DOI: 10.1121/1.418563

Google Scholar

[12] H.H. Nakajima, W. Dong, E.S. Olson, S.N. Merchant, et al., Differential intracochlear sound pressure measurements in normal human temporal bones, Journal of the Association for Research in Otolaryngology. 10(1) (2009) 23-36.

DOI: 10.1007/s10162-008-0150-y

Google Scholar

[13] H.H. Nakajima, S.N. Merchant, and J.J. Rosowski, Performance considerations of prosthetic actuators for round-window stimulation, Hearing research. 263(1) (2010) 114-119.

DOI: 10.1016/j.heares.2009.11.009

Google Scholar

[14] R.Z. Gan, B.P. Reeves, and X. Wang, Modeling of sound transmission from ear canal to cochlea, Annals of biomedical engineering. 35(12) (2007) 2180-2195.

DOI: 10.1007/s10439-007-9366-y

Google Scholar

[15] Z. Wang,X. Wang, Y. Hu, H. Shi, et al., FEM Simulation of Sound Transmission Based on Integrated Model of Middle Ear and Cochlea, Chinese Journal of Biomedical Engineering. 30(001) (2011)60-66.

Google Scholar

[16] X. Nie, H. Liu, X. Huang, J. Tan, et al., Finite element model of human ear reconstruction through micro-computer tomography, Acta oto-laryngologica. 131(3) (2011) 269-276.

DOI: 10.3109/00016489.2010.542487

Google Scholar

[17] C.F. Lee, P.R. Chen, W.J. Lee, J.H. Chen, et al., Three-Dimensional Reconstruction and Modeling of Middle Ear Biomechanics by High-Resolution Computed Tomography and Finite Element Analysis, The Laryngoscope. 116(5) (2006) 711-716.

DOI: 10.1097/01.mlg.0000204758.15877.34

Google Scholar

[18] N. Kim, K. Homma, and S. Puria, Inertial bone conduction: symmetric and anti-symmetric components, Journal of the Association for Research in Otolaryngology. 12(3)(2011) 261-279.

DOI: 10.1007/s10162-011-0258-3

Google Scholar

[19] C.R. Steele and K. -M. Lim, Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism, Audiology and Neurotology. 4(3-4)(1999) 197-203.

DOI: 10.1159/000013841

Google Scholar

[20] M. Thorne, A.N. Salt, J.E. DeMott, M.M. Henson, et al., Cochlear Fluid Space Dimensions for Six Species Derived From Reconstructions of Three-Dimensional Magnetic Resonance Images, The Laryngoscope. 109(10) (1999) 1661-1668.

DOI: 10.1097/00005537-199910000-00021

Google Scholar

[21] I. Teudt, S. McCusker, and C. Richter. Basilar membrane and tectorial membrane stiffness in CBA/Caj mice. in ARO—Midwinter meeting. (2007).

DOI: 10.1007/s10162-014-0463-y

Google Scholar

[22] R.Z. Gan, M.W. Wood, and K.J. Dormer, Human middle ear transfer function measured by double laser interferometry system, Otology & Neurotology. 25(4)(2004) 423-435.

DOI: 10.1097/00129492-200407000-00005

Google Scholar

[23] A. Arnold, M. Kompis, C. Candreia, F. Pfiffner, et al., The floating mass transducer at the round window: Direct transmission or bone conduction? Hearing Research. 263(1)(2010) 120-127.

DOI: 10.1016/j.heares.2009.12.019

Google Scholar

[24] S.N. Merchant, M.E. Ravicz, and J.J. Rosowski, Acoustic input impedance of the stapes and cochlea in human temporal bones. Hearing research. 97(1) (1996) 30-45.

DOI: 10.1016/s0378-5955(96)80005-0

Google Scholar

[25] T. Gundersen, ø. Skarstein, and T. Sikkeland, A study of the vibration of the basilar membrane in human temporal bone preparations by the use of the Mossbauer effect, Acta Oto-Laryngologic. 86(1-6)(1978) 225-232.

DOI: 10.3109/00016487809124740

Google Scholar

[26] S. Stenfelt, S. Puria, N. Hato, and R.L. Goode, Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli, Hearing research. 181(1)(2003) 131-143.

DOI: 10.1016/s0378-5955(03)00183-7

Google Scholar

[27] D.D. Greenwood, A cochlear frequency-position function for several species-29 years later, The Journal of the Acoustical Society of America. 87 (1990) 2592.

DOI: 10.1121/1.399052

Google Scholar