[1]
S. Y. Zhang, J. C. Wang, X. P. Liu, Differential geometry and nonlinear control systems I, Information and Control, 21(1992) 37-42.
Google Scholar
[2]
A. Isidori, Nonlinear control systems, Springer Verlag, (1995).
Google Scholar
[3]
S. Y. Zhang, J. C. Wang, X. P. Liu, Differential geometry and nonlinear control systems IV, Information and Control, 21(1992) 229-234.
Google Scholar
[4]
P. A. Absil, R. Mahony, R. Sepulchre, Riemannian geometry of grassmann manifolds with a view on algorithmic computation, Acta Applicandae Mathematicae, 80(2004) 199-220.
DOI: 10.1023/b:acap.0000013855.14971.91
Google Scholar
[5]
X. C. Wang, Grassmannian, central projecetion, and output feedback pole assignment of linear systems, IEEE Transactions on Automatic Control, 41(1996) 786-794.
DOI: 10.1109/9.506231
Google Scholar
[6]
W. Xu, B. Hassibi, Compressed sensing over the grassman manifold: a unified analytical framework, 46th Annual Alleton Conference, (2008) 562-567.
DOI: 10.1109/allerton.2008.4797608
Google Scholar
[7]
W. Dai, Y. Liu, B. Rider, Quantization bounds on grassmann manifold applications to MIMO Communications, IEEE Transactions on Information Theory, 54(2008) 1108 – 1123.
DOI: 10.1109/tit.2007.915691
Google Scholar
[8]
S. M. Deshmukh, S. S. Deshmukh, R. D. Kanphade, N. A. Patil, The grassmannian manifold and controllablity of the linear time-invariant control systems, IJCSI International Journal of Computer Science, 7 (2010) 36-40.
Google Scholar
[8]
R. Hermann, C. Martin, Lie and morse theory for periodic orbits of vector fields and matrix riccati equations, I: general lie-theoretic methods, Mathematical Systems Theory, 15 (1982) 277-284.
DOI: 10.1007/bf01786984
Google Scholar
[9]
W. M. Boothby, An introduction to differentiable manifolds and Rirmannian geometry, Elsevier (1986).
Google Scholar
[10]
S. S. Chern, W. Chen, K. S. Lam, Lectures on differential geometry, World Scientific (1999).
Google Scholar