Effects of Growth Time on Morphologies of ZnO Nanorod Arrays

Article Preview

Abstract:

well-aligned ZnO nanorod arrays (ZNRAs) grown on the ZnO seed layers coated p-silicon (p-Si) substrates in various times from 1.5 to 5 hr have been fabricated from aqueous solutions at low temperature. Morphologies, crystalline structure and optical transmission were investigated by a scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The results showed that ZNRAs grew vertically from the substrates, having uniform thickness and length distribution, the average diameters and length of ZnO nanorods increased with increasing growth time below 3 hr. The XRD results showed that ZnO nanorods were wurtzite-structured (hexagonal) ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

324-328

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Zhu, C. Shan, J.Y. Zhang, Z.Z. Zhang, B.H. Li, D.X. Zhao, B. Yao, D.Z. Shen, X.W. Fan, Z.K. Tang, X. Hou and K.L. Choy. Adv. Mater., vol. 22 (2010), pp.1-5.

Google Scholar

[2] Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, H.Q. Yan. Adv. Mater., 15 (2003), pp.353-389.

DOI: 10.1002/adma.200390087

Google Scholar

[3] J.S. Yu, Z.L. Yuan, G.Z. Xie and Y.D. Jiang. Journal of Electronic Science and Technology, vol. 8 (2010), pp.3-9.

Google Scholar

[4] B. Liu and H.C. Zeng. Langmuir, vol. 20 (2004), pp.4196-4204.

Google Scholar

[5] Z.W. Pan, Z.R. Dai and Z.L. Wang. Science, vol. 291 (2001), p. (1947).

Google Scholar

[6] Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu and Z.L. Wang. J. Mater. Chem., vol. 19 (2009), pp.9260-9264.

Google Scholar

[7] R. Konenkamp, R.C. Word and C. Schlegel. Appl. Phys. Lett., vol. 85 (2004), pp.6004-6006.

Google Scholar

[8] W.I. Park and G.C. Yi. Adv. Mater., vol. 16 (2004), pp.87-90.

Google Scholar

[9] L.M. Li, Z.F. Du, C.C. Li, J. Zhang and T.H. Wang. Nanotechnology, vol. 18 (2007), p.355606.

Google Scholar

[10] L. Vayssieres, Adv. Mater., vol. 15 (2003), pp.464-466.

Google Scholar

[11] H.Q. Le, S.J. Chua, Y.W. Koh, K.P. Loh, Z. Chen, C.V. Thompson and E. A. Fitzgerald. Appl. Phys. Lett., vol. 87 (2005), p.101908.

Google Scholar

[12] L. Vayssieres, K. Keis, S.E. Lindquist and A. Hagfeldt. J. Phys. Chem. B, vol. 105 (2001), pp.3350-3352.

Google Scholar

[13] L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally and P. Yang. Angew. Chem. Int. Ed., vol. 42(2003), pp.3031-3034.

DOI: 10.1002/anie.200351461

Google Scholar

[14] Z. L. Wang and J. Song. Science, vol. 312 (2006) pp.242-246.

Google Scholar

[15] J.S. Yu, Z.L. Yuan, S.J. Han and Z. Ma. Nanoscale Research Letters, Vol. 7 (2012), p.517.

Google Scholar

[16] Z.L. Yuan, J.S. Yu, W.M. Ma and Y.D. Jiang. Appl. Phys. A, Vol. 106 (2012), pp.511-515.

Google Scholar

[17] Z.L. Yuan and Y.J. Ren. Physica E, Vol. 48 (2013), pp.128-132.

Google Scholar

[18] B. Kannan, K. Castelino and A. Majumdar. Nano Lett., vol. 3 (2003), pp.1729-133.

Google Scholar