Synthesis of Unique Structures of Carbon Nanotube at Anodic Aluminum Oxide Template

Article Preview

Abstract:

Carbon nanotube (CNT) is one of the most attractive nanomaterials which may be used in many potential applications of nanotechnology due to its excellent mechanical, electrical and thermal properties. We demonstrated the fabrication of carbon nanotube at the surface of anodic aluminum oxide (AAO) membrane by chemical vapor deposition (CVD) method. Acetylene was used as a hydrocarbon source and Fe as catalyst. CNT was synthesized at different temperature. The iron catalyst was confined in the holes of the AAO membrane. A variety of carbon structures such as nanotubes, helices, spiral, and hook-like curved shapes in the range of micrometer were synthesized. High graphitic multiwall carbon nanotube (MWCNT) was found at 700-750°C temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-323

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[2] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers: Nature Vol. 363 (1993), p.605.

DOI: 10.1038/363605a0

Google Scholar

[3] Q. Ngo, B. A. Cruden, A. M. Cassell, G. Sims, M. Meyyappan, J. Li and C.Y. Yang: Nano Lett. Vol. 4 (2004), p.2403.

Google Scholar

[4] A. P. Graham, G.S. Duesberg, R.V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl, and W. Hoenlein: Small Vol. 1 (2005), p.382.

DOI: 10.1002/smll.200500009

Google Scholar

[5] O. Kuttel, O. Groening, C. Emmenegger and L. Schlapbach: Appl. Phys. Lett. Vol. 73(1998), 2113.

Google Scholar

[6] J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han and M. Meyyappan: Appl. Phys. Lett. Vol. 82 (2003), p.2491.

DOI: 10.1063/1.1566791

Google Scholar

[7] L. Ci, S. Xie, D. Tang, X. Yan, Y. Li, Z. Liu, X. Zou, W. Zhou and G. Wang: Chem. Phys. Lett. Vol. 349 (2001), p.191.

Google Scholar

[8] J. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Konya, A. Fonseca, C. Laurent and J. Nagy: Chem. Phys. Lett. Vol. 317 (2000), p.83.

DOI: 10.1016/s0009-2614(99)01338-x

Google Scholar

[9] W. Zhou, Y. Ooi, R. Russo, P. Papanek, D. Luzzi, J. Fischer, M. Bronikowski, P. Willis and R. Smalley: Chem. Phys. Lett. Vol. 350 (2001), p.6.

Google Scholar

[10] N.M. Rodriguez, M. S. Kim, F. Fortin, I. Mochida and R.T.K. Baker: Appl. Catal. A, General, Vol. 48 (1997), p.265.

Google Scholar

[11] A. K. Kasi, M.W. Ashraf, J.K. Kasi, S. Tayyaba and N. Afzulpurkar: WASETVol. 64 (2010), p.56.

Google Scholar

[12] M. Hasan, A. K. Kasi, J. K. Kasi and N. Afzulpurkar: Nanosci. Nanotechnol. Lett. Vol. 4, Issue. 5 (2012), 569-573.

DOI: 10.1166/nnl.2012.1354

Google Scholar

[13] H. Masuda and K. Fukuda: Science Vol. 268 (1995), p.1466.

Google Scholar

[14] J. K. Kasi, A. K. Kasi, N. Afzalpurkar, M. Hasan, S. Pratontep and A. Poyai: Nanosci. Nanotechnol. Lett. Vol. 4 (2012), p.537.

DOI: 10.1166/nnl.2012.1353

Google Scholar

[15] A. K. Kasi, J. K. Kasi, N. Afzulpurkar, E. Bohez and A. Tuantranont: Nanosci. Nanotechnol. Lett. Vol. 4 (2012), p.530.

DOI: 10.1166/nnl.2012.1349

Google Scholar

[16] C. R. Martin: Science Vol. 266 (1994), p. (1961).

Google Scholar

[17] A.K. Kasi, N. Afzulpurkar, J.K. Kasi, A. Tuantranont and P. Dulyaseree: J. Vac. Sci. Technol. B, Vol. 29 (2011), p. D1071.

Google Scholar

[18] E. C. Vermisoglou, G. Pilatos, G. E. Romanos, G. N. Karanikolos, N. Boukos, K. Mertis, N. Kakizis and N. K. Kanellopoulos: MicroporousMesoporous Mater. Vol. 110 (2008), p.25.

DOI: 10.1016/j.micromeso.2007.08.001

Google Scholar

[19] J.S. Lee, G. H. Gu, H. Kim, K.S. Jeong, J. Bae and J.S. Suh: Chem. Mater. Vol. 13 (2001), p.2387.

Google Scholar

[20] J. J. Schneider, N. I. Maksimova, J. Engstler, R. Joshi, R. Schierholz and R. Feile: Inorganica. Chimica. Acta. Vol. 361 (2008), p.1770.

DOI: 10.1016/j.ica.2006.10.025

Google Scholar

[21] M. J. Kim, T. Y. Lee, J. H. Choi, J. B. Park, J. S. Lee, S. K. Kim, J. Yoo and C. Park: Diamond Relat. Mater. Vol. 12 (2003), p.870.

Google Scholar

[22] Y.C. Sui, D.R. Acosta, J.A. Gonzalez-Leon, A. Bermudez, J. Feuchtwanger, B.Z. Cui, J.O. Flores, and J.M. Saniger: J. Phys. Chem. B Vol. 105 (2001), p.1523.

Google Scholar

[23] D. Yao and N. Wang: J. Phys. Chem. B Vol. 105 (2001), p.11395.

Google Scholar

[24] J. Y. Miao, Y. Cai, Y. F. Chan and N. Wang: Microsc. Microanal. Vol. 11(2005), p.1414.

Google Scholar

[25] A. Popp, J. Engstler and J.J. Schneider: Carbon, Vol. 47 (2009), p.3208.

Google Scholar

[26] J. K. Kasi, A. K. Kasi, W. Wongwiriyapan, N. Afzulpurkar, P. Dulyaseree, M. Hasan and A. Tuantranont: Advanced Materials Research, Vol. 557-559 (2012) p.544.

DOI: 10.4028/www.scientific.net/amr.557-559.544

Google Scholar

[27] Y.C. Sui, J.A. Gonzalez-Leon, A. BermudezandJ.M. Saniger: Carbon Vol. 39 (2001), p.1709.

Google Scholar