[1]
Y. Ju and B. Xu: Theoretical and experimental studies on mesoscale flame propagation and extinction, Proc. Comb. Inst. 30 (2005) 2445-2453.
DOI: 10.1016/j.proci.2004.08.234
Google Scholar
[2]
J. Li, S.K. Chou, W.M. Yang and Z. W. Li: A numerical study on premixed micro-combustion of CH4-air mixture: Effects of combustor size, geometry and boundary conditions on flame temperature, Chem. Eng. Jou. 150 (2009) 213-222.
DOI: 10.1016/j.cej.2009.02.015
Google Scholar
[3]
J. Li, S.K. Chou, W.M. Yang and Z. W. Li: Experimental and numerical study of the wall temperature of cylindrical micro combustors, J. Micromech. Microeng. 19 (2009) 015019, 1-11.
DOI: 10.1088/0960-1317/19/1/015019
Google Scholar
[4]
K. Maruta: Micro and mesoscale combustion, Proc. Combust. Instit. 33 (2011), 125-150.
Google Scholar
[5]
A. Minotti, C. Bruno and F. Cozzi: LES Simulation of CH4/air Microcombustor with Detailed Chemistry, Combustion Science and Technology. 183 (2011), 554-574.
DOI: 10.1080/00102202.2010.523031
Google Scholar
[6]
F. Cozzi, A. Coghe, A. Olivani and M. Logora: Stability and Combustion Efficiency of a Meso-Scale Combustor Burning Different Hydrocarbon Fuels, 30th Meeting of the Italian Section of the Combustion Institute, Ischia, Italy (2007).
Google Scholar
[7]
F. Cozzi, A. Coghe, Y. D'Angelo, B. Renou and M. Boukhalfa: Experimental study of performances and internal flow field of a meso-scale vortex-combustor, 4th European Combustion Meeting. Vienna, Austria (2009).
Google Scholar
[8]
S.W. Janson: Chemical and Electric Micropropulsion Concepts for Nanosatellites, AIAA Journal (1994), 1994-2998.
Google Scholar
[9]
W.A. DeGroot and S.R. Oleson: Chemical Microthruster Options, AIAA Journal (1996), 1996-2863.
Google Scholar
[10]
J. Mueller: Thruster Options for Microspacecraft: A Review and Evaluation of Existing Hardware and Emerging Technologies, AIAA Journal (1997), 1997-3058.
DOI: 10.2514/6.1997-3058
Google Scholar
[11]
C. Bruno: Chemical Microthrusters: Effect of Scaling on Combustion, AIAA Journal (2001), 2001-3711.
Google Scholar
[12]
J.A. Federici et al.: Catalytic microcombustors with integrated thermoelectric elements for portable power production, Journal of Power Sources 161 (2006) 1469-1478.
DOI: 10.1016/j.jpowsour.2006.06.042
Google Scholar
[13]
N.S. Kaisare, G.D. Stefanidis and G. Vlachos: Millisecond Production of Hydrogen from Alternative, high hydrogen density fuels in a cocurrent multifunctional microreactor, Industrial & Engineering Chemistry Research. 48 (2009) 1749-1760.
DOI: 10.1021/ie800392z
Google Scholar
[14]
G.D. Stefanidis, N.S. Kaisare and D.G. Vlachos: Modeling Ignition in Catalytic Microreactors, Chemical Engineering and Technology. 31 (2008) 8, 1170-1175.
DOI: 10.1002/ceat.200800238
Google Scholar
[15]
N.S. Kaisare and D.G. Vlachos: Extending the region of stable homogeneous micro-combustion through forced unsteady operation, Proc. Combust. Instit. 31 (2007), 3293-3300.
DOI: 10.1016/j.proci.2006.07.031
Google Scholar
[16]
N.S. Kaisare and D.G. Vlachos: Optimal reactor dimension for homogeneous combustion in small channels, Catal. Today 120 (2007), 96-106.
DOI: 10.1016/j.cattod.2006.07.036
Google Scholar
[17]
J.A. Federici et al.: Single Channel and Heat Recirculation Catalytic Microburners: an experimental and computational fluid dynamics study, Proc. Combust. Inst. 32 (2009), 3011-3018.
DOI: 10.1016/j.proci.2008.07.005
Google Scholar
[18]
J. Denat: Large Eddy Simulation of Hydrocarbon Combustion in a Miniaturized Reverse Flow Chamber, EUCASS 2009, Versailles (2009).
Google Scholar
[19]
S. Raimondeau, D. Norton, D.G. Vlachos and R.I. Masel: Modeling of high temperature microburners, Proc. Comb. Inst. 29 (2002), 901-907.
DOI: 10.1016/s1540-7489(02)80114-6
Google Scholar
[20]
S. Karagiannidis et al.: Hetero-homogeneous combustion and stability maps in methane fueled catalytic microreactors, Proc. Comb. Inst. 31 (2007), 3309-3317.
DOI: 10.1016/j.proci.2006.07.121
Google Scholar
[21]
D.G. Norton and D.G. Vlachos: Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures, Chem. Eng. Sci. 58 (2003), 4871-4882.
DOI: 10.1016/j.ces.2002.12.005
Google Scholar
[22]
S. Prakash, A.D. Armijo, R.I. Masel and M.A. Shannon: Flame dynamics and structures within sub-millimiter combustors, AIChE Journal. 53 (2007), 6.
DOI: 10.1002/aic.11180
Google Scholar
[23]
V. Vijayan and A.K. Gupta: Combustion and Heat Transfer at Meso Scale with Thermal Energy Recirculation, 47th AIAA ASM, 2009-443, 5-8 January, Orlando, Florida, (2009).
DOI: 10.2514/6.2009-443
Google Scholar
[24]
M. -H. Wu, Y. Wang, V. Yang and R.A. Yetter: Combustion in meso-scale vortex chambers, Proc. Combust. Inst. 31 (2007), 3235-3242.
DOI: 10.1016/j.proci.2006.08.114
Google Scholar
[25]
A.H. Epstein: Millimeter-scale, mems gas turbine engines, Proceedings of ASME turbo expo 2003 power for land, sea, and air, Atlanta, Georgia, USA: (2003), 1–28.
DOI: 10.1115/gt2003-38866
Google Scholar
[26]
S. Mizuky: Development of compressor for ultra micro gas turbine, J. Therm. Sci. 16 (2007) 1, 19-27.
Google Scholar
[27]
C.R. Shaddix: 33rd National Heat Transfer Conference NHTC'99, American Society of Mechanical Engineers, Albuquerque, NM, USA, (1999), 1150.
Google Scholar
[28]
K. Dellimore and C. Cadou: Fuel-air mixing challenges in micro-power systems, 42nd AIAA ASME 2004-301, Reno, Nevada, (2004).
DOI: 10.2514/6.2004-301
Google Scholar
[29]
J. F. Daunenhofer and J. R. Baron: Grid Adaption for the 2D Euler Equations, Technical Report AIAA-85-0484, American Institute of Aeronautics and Astronautics, (1985).
Google Scholar
[30]
E. H. Cuthill and J. McKee: Reducing Bandwidth of Sparse Symmetric Matrices, Proc. ACM 24th National Conf., New York (1969), 157-172.
DOI: 10.1145/800195.805928
Google Scholar
[31]
R. Deyer, H. Zhang and T. Moller: Delaunay Mesh Construction, Eurographics Symposium on Geometry Processing, Alexander Belyaev, Michael Garland (Editors) (2007).
Google Scholar
[32]
T. -H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu: A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation, Computers Fluids, 24(3): 227-238 (1995).
DOI: 10.1016/0045-7930(94)00032-t
Google Scholar
[33]
B. F. Magnussen: On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow, 19th AIAA Aerospace Science Meeting, St. Louis, MO, (1981).
DOI: 10.2514/6.1981-42
Google Scholar
[34]
I. R. Gran, and B. F. Magnussen: A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry, Comb. Sci. and Tech., (1996) 119: 191.
DOI: 10.1080/00102209608951999
Google Scholar
[35]
GRI-Mech Version 1. 2 released 11/16/94, information on http: /www. me. berkley. edu/gri_mech.
Google Scholar
[36]
information on http: /www. me. berkley. edu/gri_mech/version30/files30/thermo30. dat.
Google Scholar
[37]
J. D. Anderson, Jr. Hypersonic and High Temperature Gas Dynamics. McGraw Hill. Chapter 12, (1989), 468-481.
Google Scholar
[38]
C. Mathur, and S.C. Saxena: Viscosity of polar gas mixture: Wilke's method, Applied Scientific Research. Vol 15, n. 1, 404-410, DOI: 10. 1007/BF00411574.
Google Scholar
[39]
B. Van Leer: Toward the Ultimate Conservative Difference Scheme. IV. A Second Order Sequel to Godunov's Method, Jounal of Computational Physics, 32: 101-136 (1979).
DOI: 10.1016/0021-9991(79)90145-1
Google Scholar