A Numerical Approach of the Influence of Elliptic Inclusions on the Dynamic Behavior of One End Supported Beams

Article Preview

Abstract:

Composite structures offer lighter weight and higher strength and stiffness than most metal materials. The composite structures are increasingly applied in areas such as automotive and aerospace engineering among others. From the different types of composite materials, elliptical inclusions particulates provide an opportunity to control the stiffness and damping as a function of the ratio of the larger to shorter axis, orientation and size. In this paper we present a first evaluation of the effect of elliptical inclusions in the vibration modes of a beam single supported. Here, we can see that for inclusions with the major axis oriented parallel to the axis of the beam, the maximum stresses tend to be higher, while the frequencies and offsets remain similar.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-172

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.A. Mayugo Majó: Estudio constitutivo de materiales compuestos laminados sometidos a cargas cíclicas, Tesis Doctoral, Universidad Politécnica de Cataluña, Barcelona (2003).

Google Scholar

[2] J. Happin-Smith: An introduction to modern vehicle design, Butterworth-Heinemann, Oxford Great Britain (2002).

Google Scholar

[3] Barbero, J. Ever J.: Introduction to composite materials design, Taylor Francis Ed, Philadelphia, London (1999).

Google Scholar

[4] M. Kachanov and I. Sevostianov, in: On quantitative characterization of microstructure and effective properties, Int. J. of Solid and Structures, Vol. 42 (2004), pp.309-336.

Google Scholar

[5] L. Collini: Micromechanical modeling of eslasto-plastic behavior of heterogeneous nodular cast iron, Tesis doctoral, Universita Degli Studi Di Parma, Italia (2004).

Google Scholar

[6] J.D. Eshelby, in: The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Royal Soc. of London, Ser. A, Vol. 241 (1957), p.376.

DOI: 10.1098/rspa.1957.0133

Google Scholar

[7] R. Hill, in: A self-consistent mechanics of composites materials, J. Mech. Phys. Solids, Vol. 13 (1965), p.213.

Google Scholar

[8] B. Budiansky, in: On the elastic moduli of some heterogeneous materials, J. Mech. Phys. Solids, Vol. 13 (1965), p.233.

Google Scholar

[9] Y.H. Zhao, G.P. Tandon and G.J. Weng, in: Elastic moduli of porous materials, Acta Mechanica, Vol. 76 (1989), pp.105-130.

DOI: 10.1007/bf01175799

Google Scholar

[10] J.K. Mackenzie, in: Elastic constants of a solid containing spherical holes, Proc. Phys. Soc. London. 63B(1), pp.2-11 (1950).

Google Scholar

[11] R.W. Zimmerman, in: Compressibility of an isolated spherical cavity in isotropic medium, J. Appl. Mech., Vol. 52 (1985), pp.606-608.

Google Scholar

[12] M. Kachanov, I. Tsukrov and B. Shafiro, in: Effective Moduli of solid with cavities of various shapes, Appl. Mech. Rev., Vol. 47 (1994), pp.151-174.

DOI: 10.1115/1.3122810

Google Scholar

[13] J. Schjodt-Thomsen and R. Pyszard, in: Inclusion dispersion: Effects on stress and effective properties, Proc. XXI ICTAM, Warsaw, Poland, (2004).

Google Scholar

[14] R.D. Adams, P. Cawley, C.J. Pye and J.A. Stone, in: A vibration testing for non-destructively assessing the integrity of the structures. J. Mech. Eng. Sci., Vol. 20 (1978), pp.93-100.

DOI: 10.1243/jmes_jour_1978_020_016_02

Google Scholar

[15] K. Nikpour, A.D. Dimarogonas, in: Local compliance of composite cracked bodies, Compos Sci. Technol., Vol. 32 (1988), pp.209-23.

Google Scholar

[16] K. Nikpour, in: Buckling of cracked composite columns, Int. J. Solids Struct., Vol 26(12) (1990), p.1371–86.

DOI: 10.1016/0020-7683(90)90084-9

Google Scholar

[17] S. Oral, in: A shear flexible finite element for non-uniform laminated composite beams, Comput. Struct., Vol. 38(3) (1991), pp.353-60.

Google Scholar

[18] J.G. Berryman, in: Generalization of Eshelby's Formula for a Single Ellipsoidal Elastic Inclusion to Poroelasticity and Thermoelasticity, Phys. Rev. Lett., Vol. 79(6) (1997), pp.1142-1145.

DOI: 10.1103/physrevlett.79.1142

Google Scholar