Dynamic Preisach Hysteresis Model for Magnetostrictive Materials for Energy Application

Article Preview

Abstract:

In this paper the magnetostrictive material considered is Terfenol-D. Its hysteresis is modeled by applying the DPM whose identification procedure is performed by using a neural network procedure previously publised [. The neural network used is a multiplayer perceptron trained with the Levenberg-Marquadt training algorithm. This allows to obtain the Preisach distribution function, without any special conditioning of the measured data, owing to the filtering capabilities of the neural network interpolators. The model is able to reconstruct both the magnetization relation and the Field-strain relation. The model is validated through comparison and prediction of data collected from a typical Terfenol-D transducer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-77

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Zang, APPLIED PHYSICS LETTERS 98, (2011), 232505.

Google Scholar

[2] C. Natale, F. Velardi, C. Visone, Identification and compensation of Preisach hysteresis models for magnetostrictive actuators, Physica B, 306 (2001) pp.161-165.

DOI: 10.1016/s0921-4526(01)00997-8

Google Scholar

[3] G. Bertotti, IEEE Trans. on Magnetics, 28, (1992), 2599.

Google Scholar

[4] Franzitta, V., Rizzo, G. - Renewable energy sources: A mediterranean perspective. ICBEE 2010-2nd International Conference on Chemical, Biological and Environmental Engineering, Proceedings, pp.48-51, art. no. 5652332 (2010).

DOI: 10.1109/icbee.2010.5652332

Google Scholar

[5] Bonanno, A., Franzitta, V., Muzio, F.P., Trapanese, M. - A multiphysics approach to the design of a seawave energy conversion system. Proceedings of ICSET, Singapore, 2008, p. p.665 – 668, art. no. 4747090.

DOI: 10.1109/icset.2008.4747090

Google Scholar

[6] Di Dio, V., Franzitta, V., Muzio, F., Scaccianoce, G., Trapanese, M. - The use of sea waves for generation of electrical energy and hydrogen. MTS/IEEE Biloxi - Marine Technology for OurFuture: Global and Local Challenges, OCEANS, 2009, art. no. 5422319.

DOI: 10.23919/oceans.2009.5422319

Google Scholar

[7] Sorrentino, G., Scaccianoce, G., Morale, M., Franzitta, V. The importance of reliable climatic data in the energy evaluation. Energy (2012).

DOI: 10.1016/j.energy.2012.04.015

Google Scholar

[8] Trapanese, M., Viola, A., Franzitta, V. Description of hysteresis of nickel metal hybride battery. IECON 2012, 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, Canada, pp.967-970.

DOI: 10.1109/iecon.2012.6388590

Google Scholar

[9] Franzitta, V., Viola A., Trapanese M.; Description of hysteresis in Lithium battery by classical Preisach model, Advanced Materials Research Vols. 622-623 (2013) pp.1099-1103.

DOI: 10.4028/www.scientific.net/amr.622-623.1099

Google Scholar

[10] Ciulla G., Franzitta V.; Lo Brano V., Viola A., Trapanese M., Mini Wind Plant to Power Telecommunication Systems: a Case Study in Sicily, Advanced Materials Research Vols. 622-623 (2013) pp.1078-1083.

DOI: 10.4028/www.scientific.net/amr.622-623.1078

Google Scholar

[11] Trapanese M., A model of a linear synchronous motor based on distribution theory, J App Phys, Vol. 111 (2012), Article number07E731.

Google Scholar

[12] Trapanese M, Noise enhanced stability in magnetic systems, J. App. Phys Volume 105, Issue 7, 2009, Article number 07D313.

Google Scholar

[13] Cirrincione M., Miceli R., Galluzzo G.R., M. Trapanese, Preisach function identification by neural networks, IEEE Transactions on Magnetics Volume 38, Issue 5 I, (2002), Pages 2421-2423.

DOI: 10.1109/tmag.2002.803614

Google Scholar