[1]
M. Vukobratovic and D. Juricic, Contribution to the synthesis of biped gait, IEEE Transaction on Biomedical Engineering, vol. 16, no. 1, pp.1-6, (1969).
DOI: 10.1109/tbme.1969.4502596
Google Scholar
[2]
H. Hemami, F. Weimer, and S. Koozekanani, Some aspects of the inverted pendulum problem for modeling of locomotion systems, IEEE Transactions on Automatic Control, vol. 18, no. 6, pp.658-661, (1973).
DOI: 10.1109/tac.1973.1100432
Google Scholar
[3]
G. Taga, Y. Yamaguchi and H Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment, Biological Cybernetics, vol. 65, no. 3, pp.147-159, (1991).
DOI: 10.1007/bf00198086
Google Scholar
[4]
J. Pratt, P. Dilworth, and G. Pratt, Virtual model control of a bipedal walking robot, IEEE International Conference on Robotics and Automation, vol. 1, pp.193-198, (1997).
DOI: 10.1109/robot.1997.620037
Google Scholar
[5]
B. Hengst, D. Ibbotson, S. B. Pham and C. Sammut, Omnidirectional locomotion for quadruped robots, RoboCup 2001: Robot Soccer World Cup V. Springer, p.368–373, (2002).
DOI: 10.1007/3-540-45603-1_45
Google Scholar
[6]
M. S. Kim and W. Uther, Automzaic gait optimization for quadruped robots, Australasian Conference on Robotics and Automation, pp.1-9, (2003).
Google Scholar
[7]
M. Hebbel, W. Nistico and D. Fisseler, Learning in a high dimensional space: fast omnidirectional quadrupedal locomotion, Lecture Notes in Computer Science, vol. 4434, pp.314-321, (2007).
DOI: 10.1007/978-3-540-74024-7_28
Google Scholar
[8]
M. J. Quinland, S. K. Chalup and R. H. Middleton, Techniques for improving vision and locomotion on the sony aibo robot, 2003 Australasian Conference on Robotics and Automation, (2003).
Google Scholar
[9]
N. Kohl and P. Stone, Policy gradient reinforcement learning for fast quadrupedal locomotion, IEEE International Conference on Robotics and Automation, pp.2619-2624, (2004).
DOI: 10.1109/robot.2004.1307456
Google Scholar
[10]
C. Niehaus, T. Röfer and T. Laue, Gait-optimization on a humanoid robot using particle swarm optimization, The 2nd Workshop on Humanoid Soccer Robots at the IEEE-RAS International Conference on Humanoid Robots, (2007).
DOI: 10.1109/ichr.2007.4813927
Google Scholar
[11]
N. Kohl and P. Stone. Machine learning for fast quadrupedal locomotion, The Nineteenth National Conference on Artificial Intelligence, pp.611-616, (2004).
Google Scholar
[12]
D. Lizotte, T. Wang, M. Bowling and D. Schuurmans, Automatic gait optimization with gaussian process regression, International Joint Conference on Artificial Intelligence, pp.944-949, (2007).
Google Scholar
[13]
T. Hemker, M. Stelzer, O. von Stryk and H. Sakamoto, Efficient walking speed optimization of a humanoid robot, International Journal of Robotics Research, vol. 28, no. 2, p.303–314, (2009).
DOI: 10.1177/0278364908095171
Google Scholar
[14]
H. Wang, S. P. Wang and M. M. Tomovic, Modified sequential Kriging optimization for multidisciplinary complex product simulation, Chinese Journal of Aeronautics, vol. 23, no. 5, pp.616-622, (2010).
DOI: 10.1016/s1000-9361(09)60262-4
Google Scholar
[15]
P. Gill, W. Murray and M. Saunders, User's guide for SNOPT 7. 1: a fortran package for large-scale nonlinear programming, Report NA 05-2, Department of Mathematics, University of California at San Diego, (2006).
Google Scholar
[16]
L. G. Fonseca, H. J. C. Barbosa and A. C. C. Lemonge, A similaritybased surrogate model for expensive evolutionary optimization with fixed budget of simulations, The 11th Congress on Evolutionary Computation, p.867–874, (2009).
DOI: 10.1109/cec.2009.4983036
Google Scholar
[17]
A.F. Hernandez and M.G. Gallivan, An exploratory study of discrete time state-space models using kriging, American Control Conference, pp.3993-3998, (2008).
DOI: 10.1109/acc.2008.4587117
Google Scholar