[1]
G. Chen, J. L. Moiola, H. Wang, Bifurcation control: Theories , methods, and applications, Int. J. Bifurcation and Chaos, 10 (2000) 511-548.
DOI: 10.1142/s0218127400000360
Google Scholar
[2]
J. Ji, Local bifurcation control of a forced single degree of freedom nonlinear system : saddle-node bifurcation, Nonlinear Dynamic, E25 (2001) 369-382.
Google Scholar
[3]
D. W. Berns, J. L. Moiola, G. Chen, Controlling oscillation amplitudes via feedback, Int. J. Bifurcation and Chaos, E10 (2000) 2815-2822.
DOI: 10.1142/s0218127400001845
Google Scholar
[4]
N. N. Dung, T. Miyata, H. Yamada, N. N. Minh, Flutter response in long span bridges with wind-induced displacement by mode tracing method, Wind Eng. Ind. Aerodynamics, 77&78 (1998) 367–379.
DOI: 10.1016/s0167-6105(98)00157-3
Google Scholar
[5]
J. Ji, A. Y. T. Leung, Bifurcation control of a parametrically excited duffing system, Nonlinear Dynamics, E27 (2002) 411-417.
Google Scholar
[6]
X. Luo, , G. Chen, B. Wang, J. Fang, Y. Zou, H. Quan, Acta Phys Sin., 52 (2003) 790-794.
Google Scholar
[7]
W. Fu, J. Tang, Superharmonic resonance bifurcation control of parametrically excited system based on state feedback strategy, Acta Phys. Sin., 53 (2004) 2889-2893.
DOI: 10.7498/aps.53.2889
Google Scholar
[8]
M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, Stat. Phys., Vol. 19 1 (1978) 25-52.
DOI: 10.1007/bf01020332
Google Scholar
[9]
M. Aidan, G. K. John, M. H. Daniel, A detailed study of the generation of optically detectable watermarks using the logistic map, Chaos, Solitons and Fractals, 22 (2005) 1-9.
DOI: 10.1016/j.chaos.2005.09.029
Google Scholar
[10]
A. Nikolaidis, I. Pitas, Comparison of different chaotic maps with application to image watermarking, In: Proceedings of IEEE international symposium on circuits and systems, Geneva, (2002) 509-512.
DOI: 10.1109/iscas.2000.857483
Google Scholar
[11]
A. Tefas, A. Nikolaidis, N. Nikolaidis, V. Solachidis, S. Tsekeridous, I. Pitas, Markov chaotic sequences for correlation based watermarking schemes, In: Comparison of different, chaotic, solitons and fractals, 17 (2003) 567-573.
DOI: 10.1016/s0960-0779(02)00399-5
Google Scholar