Period-Doubling Bifurcation of Logistic Model Using Nonlinear Controller

Article Preview

Abstract:

The period-doubling bifurcation of logistic map is effectively controlled by designing nonlinear controller, and the bifurcation maps of the dynamics system which are in the dominate of nonlinear controller are compared with thoes are not in the dominate of controller. The result show that the choice of controller in an advisable way will make the effect of bifurcation control tally with the anticipative purpose by computer numerical simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1974-1978

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Chen, J. L. Moiola, H. Wang, Bifurcation control: Theories , methods, and applications, Int. J. Bifurcation and Chaos, 10 (2000) 511-548.

DOI: 10.1142/s0218127400000360

Google Scholar

[2] J. Ji, Local bifurcation control of a forced single degree of freedom nonlinear system : saddle-node bifurcation, Nonlinear Dynamic, E25 (2001) 369-382.

Google Scholar

[3] D. W. Berns, J. L. Moiola, G. Chen, Controlling oscillation amplitudes via feedback, Int. J. Bifurcation and Chaos, E10 (2000) 2815-2822.

DOI: 10.1142/s0218127400001845

Google Scholar

[4] N. N. Dung, T. Miyata, H. Yamada, N. N. Minh, Flutter response in long span bridges with wind-induced displacement by mode tracing method, Wind Eng. Ind. Aerodynamics, 77&78 (1998) 367–379.

DOI: 10.1016/s0167-6105(98)00157-3

Google Scholar

[5] J. Ji, A. Y. T. Leung, Bifurcation control of a parametrically excited duffing system, Nonlinear Dynamics, E27 (2002) 411-417.

Google Scholar

[6] X. Luo, , G. Chen, B. Wang, J. Fang, Y. Zou, H. Quan, Acta Phys Sin., 52 (2003) 790-794.

Google Scholar

[7] W. Fu, J. Tang, Superharmonic resonance bifurcation control of parametrically excited system based on state feedback strategy, Acta Phys. Sin., 53 (2004) 2889-2893.

DOI: 10.7498/aps.53.2889

Google Scholar

[8] M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, Stat. Phys., Vol. 19 1 (1978) 25-52.

DOI: 10.1007/bf01020332

Google Scholar

[9] M. Aidan, G. K. John, M. H. Daniel, A detailed study of the generation of optically detectable watermarks using the logistic map, Chaos, Solitons and Fractals, 22 (2005) 1-9.

DOI: 10.1016/j.chaos.2005.09.029

Google Scholar

[10] A. Nikolaidis, I. Pitas, Comparison of different chaotic maps with application to image watermarking, In: Proceedings of IEEE international symposium on circuits and systems, Geneva, (2002) 509-512.

DOI: 10.1109/iscas.2000.857483

Google Scholar

[11] A. Tefas, A. Nikolaidis, N. Nikolaidis, V. Solachidis, S. Tsekeridous, I. Pitas, Markov chaotic sequences for correlation based watermarking schemes, In: Comparison of different, chaotic, solitons and fractals, 17 (2003) 567-573.

DOI: 10.1016/s0960-0779(02)00399-5

Google Scholar