Structure and Electrochemical Properties of Li1-XNi0.5Mn0.5O2 Thin Film Using Different Raw Material by Sol-Gel Method

Article Preview

Abstract:

Lithium-deficient thin films Li1-xNi0.5Mn0.5O2 were synthesized by sol-gel method using metal lithium, manganese and nickel acetate salts and acetylacetonate salts as started materials, respectively. The microstructures and electrochemical performance of Li1-xNi0.5Mn0.5O2 thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvanostatic charge–discharge measurements. Lithium-deficient was due to the formation of spinel LiNi0.5Mn1.5O4 impurities. The lithium-deficient was more seriously for SB film due to contain crystal water in the acetate salts. The raw material had great influence on the morphology of the films. The SA film had better electrochemical properties than that of SB film. The first discharge capacity was about 51 μAh/cm2-μm. After 40 cycles, 76% of its discharge capacity can be retained. The metal acetylacetonate salts without crystal water are more suitable for the preparation of LiNi0.5Mn0.5O2 film by sol-gel method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2259-2263

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.B. Bates, G.R. Gruzalski, N.J. Dudney, C.F. Luck, X. Yu: Solid State Ionics 70–71 (1994) 619.

DOI: 10.1016/0167-2738(94)90383-2

Google Scholar

[2] K.H. Hwang, S.H. Lee, S.K. Joo: J. Power Sources 54 (1995) 224.

Google Scholar

[3] Hui Xia, Li Lu: APPL PHYS LETT 92, 011912 (2008).

Google Scholar

[4] Fu-Yun Shih, Kuan-Zong Fung: J. Power Sources 159 (2006) 1370–1376.

Google Scholar

[5] F. Sauvage, E. Baudrin, L. Gengembre, J. -M. Tarascon: Solid State Ionics 176 (2005) 1869 – 1876.

DOI: 10.1016/j.ssi.2005.05.012

Google Scholar

[6] Jie Song, Min-Zhen Cai, Quan-Feng Dong, Ming-Sen Zheng, Qi-HuiWuc, Sun-TaoWu: Electrochimica Acta 54 (2009) 2748–2753.

Google Scholar

[7] Chi-Hwan Han, Ji-Hoon Kim, Sung-Hwan Paeng, Dong-Joo Kwak, Youl-Moon Sung: Thin Solid Films 517 (2009) 4215–4217.

DOI: 10.1016/j.tsf.2009.02.046

Google Scholar

[8] J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda∗, O. Yamamoto: Electrochimica Acta 54 (2009) 4631–4637.

DOI: 10.1016/j.electacta.2009.03.007

Google Scholar

[9] T. Ohzuku and Y. Makimura: Chem. Lett., 30, 744 (2001).

Google Scholar

[10] O.A. Shlyakhtin, Y.S. Yoon, S.H. Choi, Y. -J. Oh: Electrochim. Acta 50(2004) 505.

Google Scholar

[11] M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari: Electrochim. Acta 50(2005) 3375.

Google Scholar

[12] Y.J. Park, J.G. Kim, M.K. Kim, H.T. Chung, H.G. Kim: Solid State Ionics 130 (2000) 203.

Google Scholar

[13] Y.H. Rho, K. Kanamura, T. Umegaki: Chem. Lett. (2001)1322.

Google Scholar

[14] Y.H. Rho, K. Kanamura, M. Fujisaki, J. Hamagami, S. Suda, T. Umegaki: Solid State Ionics 151 (2002) 151.

Google Scholar

[15] C.J. Brinker, G.W. Scherer: Sol_/Gel Science (Chapter 13), Academic Press, Boston, 1990, p.787.

Google Scholar

[16] H. Kozuka, M. Kajimura: Chem. Lett. (1999) 1029.

Google Scholar

[17] Manhong Liu, Xiaoping Yan, Hanfan Liu*, Weiyong Yu: Reactive & Functional Polymers 44 (2000) 55–64.

Google Scholar

[18] Y.J. Park , *, J.G. Kim, M.K. Kim, H.T. Chung, H.G. Kim: Solid State Ionics 130 (2000) 203–214.

Google Scholar

[19] Y. I. Jang, B. Huang, F. C. Chou, D. R. Sadoway, and Y. M. Chiang: J. Appl. Phys. 87, 7382 (2000).

Google Scholar

[20] K. Ariyoshi, Y. Iwakoshi, N. Nakayama, and T. Ohzuku: J. Electrochem. Soc. 151, A293 (2004).

Google Scholar