[1]
Ran Guo. Modeling of interfacial debonding and characterization of thermo-mechanical fatigue in particle reinforced composites. Doctoral dissertation, Beijing. Majored in mechanical engineering, Tsinghua University, (2003).
Google Scholar
[2]
Rudd R E, Broughton J Q. Concurrent coupling of length scales in solid state systems. Phys. Stat. Sol. (b), 2000, 217(1).
DOI: 10.1002/(sici)1521-3951(200001)217:1<251::aid-pssb251>3.0.co;2-a
Google Scholar
[3]
Abraham F F, Broughton J Q, Bernstein N, et al. Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhysics Letters, 1998, 44: 783.
DOI: 10.1209/epl/i1998-00536-9
Google Scholar
[4]
F.F. Abraham, J.Q. Broughton, N. Bernstein, E. Kaxiras, Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture, Europhys. Lett. 44 (6) (1998) 783–787.
DOI: 10.1209/epl/i1998-00536-9
Google Scholar
[5]
J.Q. Broughton, F.F. Abraham, N. Bernstein, E. Kaxiras, Concurrent coupling of length scales: methodology and application, Phys. Rev. B 60 (4) (1999) 2391–2403.
DOI: 10.1103/physrevb.60.2391
Google Scholar
[6]
Broughton J Q, Abraham N, Bernstein N, et al. Concurrent coupling of length scales: Methodology and applications. Phys. Rev. B, 1999, 60: 2391.
DOI: 10.1103/physrevb.60.2391
Google Scholar
[7]
Broughton JQ, Abraham FF, et al. Concurrent coupling of length scales; methodology and application. Phys. Rev. B., 1999, 60(4): 2391~2403.
DOI: 10.1103/physrevb.60.2391
Google Scholar
[8]
Gungor MR, Gray LJ, Zhou SJ, et al. Modeling of failure in metallic thin films induced by stress and electro migration: a multiscale computational analysis. Materials Research Society Symposium-proceedings, 1999, 538: 263~268.
DOI: 10.1557/proc-538-263
Google Scholar
[9]
Muralidharan K, Deymier PA, Simmons JH. Multiscale modeling of wave propagation: MD hybrid method. Materials Research Society Symposium Proceedings, 2002, 731: 15~20.
DOI: 10.1557/proc-731-w4.7
Google Scholar
[10]
Nattavut T, Ichikawa Y, Kawamura K, et al. Molecular simulation and multiscale homogenization analysis for micro inhomogeneous clay materials. Engineering Computations, 2003, 20(5-6): 559~582.
DOI: 10.1108/02644400310502450
Google Scholar
[11]
Nattavut T, Ichikawa Y, Kawamura K, et al. Molecular dynamics and multiscale homo-genization analysis of seepage/diffusion problem in bentoniteclay. International Journal for Numerical Methods in Engineering, 2002, 54(12): 1717~1749.
DOI: 10.1002/nme.488
Google Scholar
[12]
Horstemeyer MF, Baskes MI, Prantil VC, et al. A multiscale analysis of fixed - end simple shear using molecular dynamics, crystal plasticity, and a macroscopic internal state variable theory. Modeling and Simulation in Materials Science and Engineering, 2003, 11 (3): 265~286.
DOI: 10.1088/0965-0393/11/3/301
Google Scholar
[13]
Liu W K, Hao S, Vernerey FJ, et al. Multiscale Analysis and Design in Heterogeneous Systems. ⅤⅡ International Conference on Computational Plasticity, Barcelona, (2003).
Google Scholar
[14]
Fan Jinghong, Multiscale Analysis for Deformation and Failure of Materials. Beijing, Science Press, (2008).
Google Scholar
[15]
Qingsheng Yang, Daihua Zheng. Advanced Computational Mechanics. Beijing, Science Press, (2009).
Google Scholar