[1]
N. M. Nasir, T. T. Ming, A. Fakhru'l-Razi, and S. Shafreeza, Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process, Water Science and Tecchnology, vol. 62, no. 1, pp.42-47, (2010).
DOI: 10.2166/wst.2010.239
Google Scholar
[2]
S.F. Kang, C.H. Liao and S.T. Po, Decolorization of textile wastewater by photo-fenton oxidation technology, Chemosphere, vol 41, no. 8, pp.1287-1294, (2000).
DOI: 10.1016/s0045-6535(99)00524-x
Google Scholar
[3]
T.H. Kim, C. Park, J. Yang, and S. Kim, "Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of Hazardous Materials, vol. 112, no. 1-2, pp.95-103, (2004).
DOI: 10.1016/j.jhazmat.2004.04.008
Google Scholar
[4]
K. Turhan, Z. Turgut, Treatment and degradability of direct dyes in textile wastewater by ozonation: A laboratory investigation, Desalination and Water Treatment, vol. 11, no. 1-3, pp.184-191, (2009).
DOI: 10.5004/dwt.2009.800
Google Scholar
[5]
A.M.H. Carlos, and E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Applied Catalysis B: Environmental, vol. 87, no. 3-4, pp.105-145, (2009).
DOI: 10.1016/j.apcatb.2008.09.017
Google Scholar
[6]
A.I. del Río, J. Fernandez, J. Molina, J. Bonastre, and F. Cases, Electrochemical treatment of a synthetic wastewater containing a sulphonated azo dye. Determination of naphthalenesulphonic compounds produced as main by-products, Desalination, vol. 273, no. 2-3, pp.428-435, (2011).
DOI: 10.1016/j.desal.2011.01.070
Google Scholar
[7]
S. Kohtani, Y. Inaoka, K. Hayakawa, and R. Nakagaki, Degradation of benzo[a]pyrene using TiO2 and Ag-loaded BiVO4 photocatalysts: Evaluation by the Ames mutagenicity assay, Journal of Advanced Oxidation Technologies, vol. 10, no. 2, pp.381-386, (2007).
DOI: 10.1515/jaots-2007-0224
Google Scholar
[8]
W. Liu, S.F. Chen, W. Zhao, and S.J. Zhang, Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase, Journal of Hazardous Materials, vol. 164, no. 1, pp.154-160, (2009).
DOI: 10.1016/j.jhazmat.2008.07.140
Google Scholar
[9]
C. Adan, A. Martinez-Arias, S. Malato, and A. Bahamonde, New insights on solar photocatalytic degradation of phenol over Fe-TiO2 catalysts: Photo-complex mechanism of iron lixiviates, Applied Catalysis B: Environmental, vol. 93, no. 1-2, pp.96-105, (2009).
DOI: 10.1016/j.apcatb.2009.09.017
Google Scholar
[10]
M.R. Hoffmann, S.T. Martin, W.Y. Choi, and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical Reviews, vol. 95, no. 1, pp.69-96, (1995).
DOI: 10.1021/cr00033a004
Google Scholar
[11]
A. Vidal, A. I. Diaz, A. E. Hraiki, M. Romero, I. Muguruza, F. Senhaji, and J. Gonzalez, Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies, Catalysis Today, vol. 54, no. 2-3, pp.283-290, (1999).
DOI: 10.1016/s0920-5861(99)00189-3
Google Scholar
[12]
H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, and M. Anpo, Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2, Catalysis Today, vol. 84, no. 3-4, pp.191-196, (2003).
DOI: 10.1016/s0920-5861(03)00273-6
Google Scholar
[13]
C. Hu and Y. Z Wang, Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater, Chemosphere, vol. 39, no. 12, pp.2107-2215, (1999).
DOI: 10.1016/s0045-6535(99)00118-6
Google Scholar
[14]
L. Bolduc and W.A. Anderson, Enhancement of the biodegradability of model wastewater containing recalcitrant or inhibitory chemical compounds by photocatalytic pre-oxidation, Biodegradation, vol. 8, no. 4, pp.237-249, (1997).
DOI: 10.1007/978-94-017-1711-3_38
Google Scholar
[15]
M. Jonstrup, M. Warjerstam, M. Murto, and B. Mattiasson, Immobilisation of TiO2 for combined photocatalytic-biological azo dye degradation, Water Science & Technology, vol. 62, no. 3, pp.525-531, (2010).
DOI: 10.2166/wst.2010.331
Google Scholar
[16]
C.S. Turchi, and D.F. Ollis, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, Journal of Catalysis, vol. 122, no. 1, pp.178-192, (1990).
DOI: 10.1016/0021-9517(90)90269-p
Google Scholar
[17]
Y. Qian, H.X. Tang, and X.H. Wen, Characteristics and control theory of particulate matter and refractory organic matter in water, China Environmental Science Press, Beijing, (2000).
Google Scholar
[18]
F.Y. Ji, X. Xu, and Z.H. Fan, Degradation of High Concentration Nitrobenzene Using Hydrophobic Nano-CuO/TiO2 under Visible Light, CIESC Journal, vol. 60, no. 7, pp.1680-1686, (2009).
Google Scholar
[19]
X. Xu, F.Y. Ji, and Z.H. Fan, Design of spiral up-flow tower-type photocatalysis reactor, China Water & Wastewater, vol. 25, no. 23, pp.79-81, (2009).
Google Scholar