[1]
RONG Lin, ZHENG Wen-dong, QIAN Yong, et al. Study of Ultrasonic Diagnosis Method for Partial Discharge in GIS Based on Signal Envelope Spectrum[J]. High Voltage Apparatus, 2011, 47(12): 39-43, 48.
Google Scholar
[2]
QIAN Yong, HUANG Cheng-jun, JIANG Xiu-chen, et al. Current Status and Development of PD Online Monitoring Technology in GIS[J]. Hign Voltage Apparatus, 2004, 40(6): 453-456.
Google Scholar
[3]
XIAO Yan, YU Wei-yong. Present status and prospect of research of online partial discharge monitoring system in GIS[J]. High Voltage Engineering, 2005, 31(1): 47-49.
Google Scholar
[4]
GUO Can-xin, ZHANG Li, QIAN Yong, et al. Current Status of Partial Discharge Detection and Location Techniques in XLPE Power Cable[J]. High Voltage Apparatus, 2009, 45(3): 56-60.
Google Scholar
[5]
LI Li-xue, HUANG Cheng-jun, ZENG Yi, et al. Noise Reduction Using Wavelet for Envelope Signal of Partial Discharge in GIS[J]. High Voltage Apparatus, 2009, 45(1): 33-35.
Google Scholar
[6]
Liu Junhua, Yao Ming, Huang Chengjun, et al. Experimental research on partial discharge localization in GIS using ultrasonic associated with electromagnetic wave method[J]. High Voltage Engineering, 2009, 33(10): 2458-2463.
Google Scholar
[7]
J.C. Bezdek. Pattern recognition with fuzzy objective function algorithms[M]. New York, 1981, Plenum Press.
Google Scholar
[8]
Wang Kaijun, Li Jian, Zhang Junying, et al. Semi-supervised affinity propagation clustering[J]. Computer Engineering, 2007, 33(23): 197-201.
Google Scholar
[9]
Wang Kaijun, Zhang Junying, Li Dan, et al. Adaptive affinity propagation clustering[J]. ACTA AUTOMATICA SINICA, 2007, 33(12): 1242-1246.
Google Scholar
[10]
Qian Yong, HUANG Chengjun, Chen Chen, et al. Analysis of the partial discharge in generator based on sk-ku plot[J]. Hign Voltage Apparatus, 2007, 43(3): 176-178, 182.
Google Scholar
[11]
Hu Wentang, Gao Shengyou, Yu Shaofeng, et al. Application of statistic parameters in recognition of partial discharge in transformers[J]. High Voltage Engineering, 2009, 35(2): 277-281.
Google Scholar
[12]
Gulski, E., Kreuger, F.H. Computer-aided recognition of discharge sources[J]. IEEE Transactions on Electrical Insulation, 1992, 27(1): 82-92.
DOI: 10.1109/14.123443
Google Scholar
[13]
B.J. Frey, D. Dueck. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976.
DOI: 10.1126/science.1136800
Google Scholar
[14]
D.M. Tang, Q.X. Zhu, F. Yang. A Poisson-based adaptive affinity propagation clustering for SAGE data[J]. Computational Biology and Chemistry, 2010, 34(1): 63-70.
DOI: 10.1016/j.compbiolchem.2009.11.001
Google Scholar
[15]
S. Dudoit, J. Fridlyand. A prediction-based resampling method for estimating the number of clusters in a dataset[J]. Genome Biology, 2002, 3(7): 1-21.
Google Scholar
[16]
L. Kaufman, P. Rousseeuw. Finding groups in data: an introduction to clustering analysis[M]. New York, Wiley, (1990).
Google Scholar
[17]
E. Fowlkes, C. Mallows. A method for comparing two hierarchical clusterings[J]. Journal of American Statistical Society, 1983, 78(383): 553-569.
DOI: 10.1080/01621459.1983.10478008
Google Scholar
[18]
G.X. Chen, S.A. Jaradat, N. Banerjee. Evaluation and comparison of clustering algorithms in analyzing ES cell gene expression data[J]. Statistica Sinica, 2002, 12: 241-262.
Google Scholar
[19]
D.L. Davies, D.W. Bouldin. A cluster separation measure[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1979, 1(4): 224-227.
DOI: 10.1109/tpami.1979.4766909
Google Scholar
[20]
T. Calinski, J. Harabasz. A dendrite method for clustering analysis[J]. Communications in Statistics - Theory and Methods, 1974, 3(1): 1-27.
DOI: 10.1080/03610927408827101
Google Scholar