State-of-the Art and Perspectives of Superconducting Generator

Article Preview

Abstract:

Based on low temperature superconducting (LTS) & high temperature superconducting (HTS) material classification, the superconducting generators can be divided into LTS generators and HTS generators. The research status and characteristics of superconducting generators are summarized; and several topological structures of superconducting generators are introduced. Compared and studied traditional rotating machine with superconducting rotating machine, pointing out the present superconducting generators bottleneck problems. Finally, the prospects of the development of superconducting generators are described.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2061-2067

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lin Shen. Modeling and Analysis of High Temperature Superconducting Induction Motor [D]. Zhejiang: Zhejiang University, (2007).

Google Scholar

[2] Meihong Song. Study on the Excitation Field of Superconducting Generator with 3-D Finite Element Method [D]. Beijing:North China Electric Power University,(2012).

Google Scholar

[3] Z.J. Stekly,H. H. Woodson, A. M. Hatch, et al. A Study of Alternator with Superconducting Field Windings Experiment [J]. IEEE Transactions on Power Apparatus and Systems. 1966, 85(3): 274-280.

DOI: 10.1109/tpas.1966.291668

Google Scholar

[4] S.K. Singlh, C.J. Mole. Future Development of Large Superconducting Generators[J]. IEEE Transactions on Magnetics, 1989, 25(2): 1783-1786.

DOI: 10.1109/20.92647

Google Scholar

[5] Ueda K, Shimizu K, Sunada M. Current Situation of R&D on Superconducting Generator [J]. Cryogenics Engineering , 1990,25(4): 234-243.

Google Scholar

[6] Ohara T, Fukuda H, Ogawa T, et al. Development of 70 MW Class Superconducting Generators[J]. IEEE Transactions on Magnetics, 1991, 27(2): 2232-2239.

DOI: 10.1109/20.133660

Google Scholar

[7] Yamaguchi K, Takahashi M, Shiobara R, et al. 70MW Class Superconducting Generator Test [J]. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 1209-1212.

DOI: 10.1109/77.783517

Google Scholar

[8] I.A. Glebov, L. I. Chubraeva. Investigations and Developments in the Field of Superconductive Turbo generators [J]. Cryogenics Engineering (in Japanese), 1991,(31): 450-452.

DOI: 10.1016/0011-2275(91)90206-c

Google Scholar

[9] Bischof H, Engl W, H. P. Groter, et al. Practical Experiment on the Operation of a 320 kVA Synchronous Generator with a Superconducting Field Winding[J]. IEEE Transactions on Magnetics. 1989, 25(2): 1791-1795.

DOI: 10.1109/20.92649

Google Scholar

[10] Qingzhong Dai. The Actuality and Prospects of Superconducting Motor[J]. Mechanical Engineering,1987,No6, 35-37.

Google Scholar

[11] Tixador P, Brunet Y, Vedrine P, et al. Electrical Tests on a Fully Superconducting Synchronous Machine [J]. IEEE Transactions on Magnetics, 1991, 27(2): 2256-2259.

DOI: 10.1109/20.133665

Google Scholar

[12] A.J. Rodenbush, S. J. Rong. Performance of High Temperature Superconducting Coils for Implementation into Megawatt Class Generators[J]. IEEE Transactions on Applied Superconductivity, 1999,9(2): 1233-1236.

DOI: 10.1109/77.783523

Google Scholar

[13] S.K. Singh, D.W. Scherbarth, Ortoli ES, et al. Conceptual Design of a high Temperature Superconducting Generator [J]. IEEE Transactions on Applied Superconductivity, 1999,9(2): 1237-1240.

DOI: 10.1109/77.783524

Google Scholar

[14] Rabinowitz M. Superconducting Power Generation [J]. IEEE Power Engg Review, 2000, 20(5): 8-11.

Google Scholar

[15] www. amsc. com, Windtec Sea Titan Brochure, last accessed on 10 march (2012).

Google Scholar

[16] Ran Yi. Calculation and Analysis of Eletromagnetic and Temperature Fields in Axial-radial Flux Type Superconducting Synchronous Motor [D]. Harbin University of Science and Technology,2012. 3.

Google Scholar

[17] W. Nick, M. Frank, G. Klaus, J. Fraunhofer, H. -W. Neumüller, Operational experience with the world's first 3600 rpm 4 MVA genereator at Siemens, IEEE Transactions on Applied Superconductivity, 2007, vol. 17, p.2030-(2033).

DOI: 10.1109/tasc.2007.899996

Google Scholar

[18] M.K. Al-Mosawi, K. Goddard, C. Beduz, and Y. Yang. Coreless HTS Synchronous Generator Operating at Liquid Nitrogen Temperatures[J]. IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, June 2007, pp.1599-1602.

DOI: 10.1109/tasc.2007.899695

Google Scholar

[19] K.F. Goddard, B. Lukasik, M. Rotaru, J.K. Sykulski. Design Study of a High Temperature Superconducting Generator With YBCO Windings[C]. ISEF 2009-XIV International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, Arras, France, (2009).

Google Scholar

[20] A.B. Abrahamsen, N. Mijatovic, E. Seiler, etc. Design Study of 10Kw Superconducting Generator for Wind.

Google Scholar

[21] Y. Terao, M. Sekino, H. Ohsaki, Electromagnetic Design of 10 MW class Fully Superconducting Wind Turbine Generators, IEEE Transactions on Applied Superconductivity. vol, 22. No, 3, June (2012).

DOI: 10.1109/tasc.2011.2177628

Google Scholar

[22] NEDO. Report on Applying Superconducting Technology into Electrical Engineering[R]. Japan: (1998).

Google Scholar

[23] J. F. Gieras, Advancements in Electric Machines, Springer, (2010).

Google Scholar

[24] M. Miki, B. Felder, Y. Kimura, K. Tsuzuki, R. Taguchi, Y. Shiliang, Y. Xu, T. Ida, M. Izumi, Applied HTS Bulks and Wires in machines for marine propulsion, Transactions of the Cryogenic engineering conference 28 June–2 July 2009 Tucson (Arizona, USA).

DOI: 10.1063/1.3422360

Google Scholar

[25] Yuejin Tang,Jingdong Li,Tan Pan,etc. Development of Superconducting Rotating Machines —Generator and Motor[R]. Series Superconducting Technology Lecture of Power System Automation,2001: 72-76.

Google Scholar

[26] K.F. Goddard, B. Lukasik, J. Sykulski, Alternative designs of a superconducting synchronous generator: the Southampton approach, 18th International Conference on Electrical Machines ICEM, 6-9 Sept. 2008, pp.1-6.

DOI: 10.1109/icelmach.2008.4800257

Google Scholar

[27] G. Klaus, M. Wilke, J. Fraunhofer, W. Nick, H. -W. Neumuller, Design challenges and benefits of HTS synchronous machines, IEEE Power Engineering Society General Meeting, 24-28 June 2007, pp.1-8.

DOI: 10.1109/pes.2007.385756

Google Scholar

[28] B. Gamble, G. Snitchler, S.S. Kalsi, HTS generator topologies, IEEE Power Engineering Society General Meeting. (2006).

DOI: 10.1109/pes.2006.1709646

Google Scholar

[29] M. Wilke, K. Schleicher, G. Klaus, W. Nick, H. -W. Neumuller, J. Fraunhofer, K. Kahlen, R. Hartig, Numerical calculations for high-temperature superconducting electrical machines, 18th International Conference on Electrical Machines, ICEM (2008).

DOI: 10.1109/icelmach.2008.4800005

Google Scholar

[30] Maitham K. Al-Mosawi, C. Beduz, Y. Yang. Construction of a 100 kVA High Temperature Superconducting Synchronous Generator[J]. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2182-2185.

DOI: 10.1109/tasc.2005.849607

Google Scholar

[31] M.H. Sohn. Performance of High Temperature Superconducting Field Coils for a 100 HP Generator[J]. IEEE Transactions on Applied Superconductivity, 2004,14(2): 912-915.

Google Scholar

[32] Greg Snitchler,Bruce Gamble, Swam S. Kalsi. The Performance of a 5 MW High Temperature Superconductor Ship Propulsion Generator[J]. IEEE Transactions on Applied Superconductivity, 2005, 14(2): 2206-2209.

DOI: 10.1109/tasc.2005.849613

Google Scholar

[33] Kiruba, Siva. AC Losses in a High Temperature Superconducting Generator[J]. IEEE Transactions oil Applied Superconductivity, 2005,15(2): 2162-2165.

Google Scholar

[34] W.J. Carr, Jr. Basic Theory of an All-Superconducting Generator[J]. IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, June 2007, P1568-1570.

DOI: 10.1109/tasc.2007.899992

Google Scholar