Progress of Graphene-Based Composites for Adsorption of Pollutants in Wastewater

Article Preview

Abstract:

Graphene-based composites show much better adsorption capacity and other properties than single graphene under the same operating conditions. This paper summarized the different kinds of graphene-based composites removing various heavy metals and organic pollutants in wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-10

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bhatnagar and M. Sillanpää: Chem. Eng. J. Vol. 157 (2010), p.277.

Google Scholar

[2] F.L. Fu and Q. Wang: J. Environ. Manage. Vol. 92 (2011), p.407.

Google Scholar

[3] X.J. Cui and K.H. Choo: Water Res. Vol. 47 (2013), p.4227.

Google Scholar

[4] X.W. Ouyang, W. Li, S.L. Xie, T. Zhai, M.H. Yu, J.Y. Gan and X.H. Lu: New J. Chem. Vol. 37 (2013), p.585.

Google Scholar

[5] X.Q. Gao, F. Xiao, C. Yang, J. Wang and X.T. Su: J. Mater. Chem. A Vol. 1 (2013), p.5831.

Google Scholar

[6] X. Ren, C.W. Cui, T.F. Xu and X.S. Zhao: Int. J. Electrochem. Sci. Vol. 8 (2013), p.8579.

Google Scholar

[7] S.F. Barna, E.A. Ott, T.H. Nguyen, M.A. Shannon and A. Scheeline: J. Environ. Eng. Vol. 139 (2013), p.975.

Google Scholar

[8] T.S. Berzina, K.V. Gorshkov, V.V. Erokhin, V.K. Nevolin and Y.A. Chaplygin: Russ. Microelectron. Vol. 42 (2013), p.27.

DOI: 10.1134/s1063739713010022

Google Scholar

[9] Q.L. Bao, K. P Loh: ACS Nano Vol. 6 (2012), p.3677.

Google Scholar

[10] D.A.C. Brownson, L.C.S. Figueiredo-Filho, X.B. Ji, M. Gómez-Mingot, J. Iniesta, O. Fatibello-Filho, D.K. Kampouris and C.E. Banks: J. Mater. Chem. A. Vol. 1 (2013), p.5962.

DOI: 10.1039/c3ta10727b

Google Scholar

[11] A.K. Shukla and T.P. Kumar: WIREs Energy Environ. Vol. 2 (2013), p.14.

Google Scholar

[12] D. Bitounis, H. Ali-Boucetta, B.H. Hong and D.H. Min: Adv. Mater. Vol. 25 (2013), p.2258.

Google Scholar

[13] R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist and R. Wrzalik: Dalton Trans. Vol. 42 (2013), p.5682.

DOI: 10.1039/c3dt33097d

Google Scholar

[14] H. Wang, X.Z. Yuan, Y. Wu, H.J. Huang, G.M. Zeng, Y. Liu, X.L. Wang, N.B. Lin and Y. Qi: Appl. Surf. Sci. Vol. 279 (2013) 432.

Google Scholar

[15] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimeny, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff: Nature Vol. 442 (2006), p.282.

DOI: 10.1038/nature04969

Google Scholar

[16] X.Y. Yuan, Y.F. Wang, J. Wang, C. Zhou, Q. Tang and X.B. Rao: Chem. Eng. J. Vol. 221 (2013), p.204.

Google Scholar

[17] G. Gollavelli, C.C. Chang and Y.C. Ling: ACS Sustainable Chem. Eng. Vol. 1 (2013), p.462.

Google Scholar

[18] S. Thakur, G. Das, P.K. Raul and N. Karak: J. Phys. Chem. C Vol. 117 (2013), p.7636.

Google Scholar

[19] X. Yang, J.X. Li, T. Wen, X.M. Ren, Y.S. Huang and X.K. Wang: Colloids Surface. A: Vol. 422 (2013), p.118.

Google Scholar

[20] Y.H. Li, Q.J. Du, T.H. Liu, J.K. Sun, Y.H. Wang, S.L. Wu, Z.H. Wang, Y.Z. Xia and L.H. Xia: Carbohyd. Polym. Vol. 95 (2013 ), p.501.

Google Scholar

[21] X. Huang, X.Y. Qi, F Boey and H Zhang: Chem. Soc. Rev. 41 (2012), p.666.

Google Scholar

[22] J. Guo, R.Y. Wang, W.W. Tjiu, J.S. Pan and T.X. Liu: J. Hazard. Mater. Vol. 225 (2012), p.63.

Google Scholar

[23] W.J. Zhang, X.H. Shi, Y.X. Zhang, W. Gu, B.Y. Li and Y.Z. Xian: J. Mater. Chem. A Vol. 1 (2013), p.1745.

Google Scholar

[24] P.F. Zong, S.F. Wang, Y.L. Zhao, H. Wang, H. Pan and C.H. He: Chem. Eng. J. Vol. 220 (2013), p.45.

Google Scholar

[25] S. Wang, J Wei, S.S. Lv, Z.Y. Guo and F. Jiang: Clean Soil Air Water doi: 10. 1002/clen. 201200460.

Google Scholar

[26] Y.H. Tang, G. Zhang, C.B. Liu, S.L. Luo X.L. Xu, L. Chen and B.G. Wang: J. Hazard. Mater. Vol. 252 (2013), p.115.

Google Scholar

[27] S. Varma, D. Sarode, S. Wakale, B.A. Bhanvase and M. P. Deosarkar: Int. J. Chem & Phys. Sci. Vol. 2 (2013), p.132.

Google Scholar

[28] X.B. Luo, C.C. Wang, L.C. Wang, F. Deng, S.L. Luo, X.M. Tu and C. Au: Chem. Eng. J. Vol. 220 (2013), p.98.

Google Scholar

[29] F.M. Peng, T. Luo, L.G. Qiu and Y.P. Yuan: Mater. Res. Bull. Vol. 48 (2013), p.2180.

Google Scholar

[30] L.Y. Hao, H.J. Song, L.C. Zhang, X.Y. Wan, Y.R. Tang and Y. Lv: J. Colloid Interf. Sci. Vol. 369 (2012), p.381.

Google Scholar

[31] S. T Yang, J.B. Luo, J.H. Liu, Q.H. Zhou, J. Wan, C. Ma, R. Liao, H.F. Wang and Y.F. Liu: Nanosci. Nanotech. Let. Vol. 5 (2013), p.372.

Google Scholar

[32] Y.Q. Chen, L.B. Chen, H. Bai and L. Li: J. Mater. Chem. A Vol. 1 (2013), p. (1992).

Google Scholar

[33] R.J. Li, L.F. Liu and F.L. Yang: Chem. Eng. J. doi. org/10. 1016/j. bbr. 2011. 03. 031.

Google Scholar

[34] L.L. Li, L.L. Fan, M. Sun, H.M. Qiu, X.J. Li, H.M. and C.N. Luo: Colloids Surface. B: Vol. 107 (2013), p.76.

Google Scholar