Solid Oxide Electrolysis Cell Systems — Variant Analysis of the Structures and Parameters

Article Preview

Abstract:

The paper presents a variant analysis of the structure of SOEC systems. The main parameters of such systems are indicated and commented. The comparison of various configurations is shown in terms of efficiency obtained. High efficiency (70%) hydrogen generation seems possible with systems like these.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-112

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Bakalis and A. Stamatis, Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation, Applied Energy 103, p.607–617, (2013).

DOI: 10.1016/j.apenergy.2012.10.026

Google Scholar

[2] P. Pianko-Oprych and Z. Jaworski, Numerical modelling of the micro-tubular solid oxide fuel cell stacks [przeglad metod modelowania numerycznego mikrorurowych stał otlenkowych stosów ognhw paliwowych], Przemysl Chemiczny 91(9), p.1813–1815, (2012).

Google Scholar

[3] H. Marzooghi, M. Raoofat, M. Dehghani, and G. Elahi, Dynamic modeling of solid oxide fuel cell stack based on local linear model tree algorithm, International Journal of Hydrogen En- ergy 37(5), p.4367–4376, (2012).

DOI: 10.1016/j.ijhydene.2011.11.149

Google Scholar

[4] K. Chaichana, Y. Patcharavorachot, B. Chutichai, D. Saebea, S. Assabumrungrat, and A. Ar- pornwichanop, Neural network hybrid model of a direct internal reforming solid oxide fuel cell, International Journal of Hydrogen Energy 37(3), p.2498–2508, (2012).

DOI: 10.1016/j.ijhydene.2011.10.051

Google Scholar

[5] S. Bozorgmehri and M. Hamedi, Modeling and optimization of anode-supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm, Fuel Cells 12(1), p.11–23, (2012).

DOI: 10.1002/fuce.201100140

Google Scholar

[6] J. Qian, Z. Tao, J. Xiao, G. Jiang, and W. Liu, Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition, International Journal of Hydrogen Energy 38(5), p.2407–2412, (2013).

DOI: 10.1016/j.ijhydene.2012.11.112

Google Scholar

[7] J. Milewski, Advanced mathematical model of sofc for system optimization, in ASME Turbo Expo 2010: Power for Land, Sea and Air, (GT2010-22031), ASME, (2010).

Google Scholar

[8] D. Sanchez, R. Chacartegui, J. M. de Escalona, A. Munoz, and T. Sanchez, Performance analysis of a MCFC & supercritical carbon dioxide hybrid cycle under part load operation, International Journal of Hydrogen Energy 36(16), p.10327 – 10336, (2011).

DOI: 10.1016/j.ijhydene.2010.09.072

Google Scholar

[9] H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong, and S. Lee, A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kw mcfc power plant, International Journal of Hydrogen Energy 37(15), p.11394–11400, (2012).

DOI: 10.1016/j.ijhydene.2012.04.135

Google Scholar

[10] G. De Lorenzo and P. Fragiacomo, Electrical and electrical-thermal power plants with molten carbonate fuel cell/gas turbine-integrated systems, International Journal of Energy Re- search 36(2), p.153–165, (2012).

DOI: 10.1002/er.1788

Google Scholar

[11] C. -G. Lee, D. -H. Kim, and H. -C. Lim, Electrode reaction characteristics under pressurized con- ditions in a molten carbonate fuel cell, Journal of the Electrochemical Society 154(4), pp. B396– B404, (2007).

DOI: 10.1149/1.2434688

Google Scholar

[12] J. Milewski, J. Lewandowski, and A. Miller, Reducing co2 emissions from a coal fired power plant by using a molten carbonate fuel cell, in Proceedings of the ASME Turbo Expo, Proceedings of the ASME Turbo Expo 2, p.389–395, (2008).

DOI: 10.1115/gt2008-50100

Google Scholar

[13] G. Discepoli, G. Cinti, U. Desideri, D. Penchini, and S. Proietti, Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment, International Journal of Greenhouse Gas Control 9, p.372–384, (2012).

DOI: 10.1016/j.ijggc.2012.05.002

Google Scholar

[14] Bartela, A. Skorek-Osikowska, and J. Kotowicz, Integration of a supercritical coal-fired heat and power plant with carbon capture installation and gas turbine, Rynek Energii 100(3), p.56–62, (2012).

DOI: 10.1016/j.energy.2013.11.048

Google Scholar

[15] K. Janusz-Szymańska, Economic efficiency of an igcc system integreted with ccs installation [efektywność ekonomiczna układu gazowo-parowego zintegrowanego ze zgazowaniem węgla oraz z instalacjaą CCS], Rynek Energii 102(5), p.24–30, (2012).

Google Scholar

[16] W. Bujalski, Optimization of electricity and heat generation in large chp plant equipped with a heat accumulator, Rynek Energii 101(4), p.131–136, (2012).

Google Scholar

[17] J. Milewski and J. Lewandowski, Solid oxide fuel cell fuelled by biogases, Archives of Thermo- dynamics 30(4), p.3–12, (2009).

Google Scholar

[18] P. Bujlo, G. Pasciak, J. Chmielowiec, and M. Malinowski, Application of polymer exchange membrane fuel cell stack as the primary energy source in commercial uninterruptible power supply unit, Journal of Power Technologies 93, p.154–160, (2013).

Google Scholar

[19] W. Doenitz, R. Schmidberger, E. Steinheil, and R. Streicher, Hydrogen production by high temperature electrolysis of water vapour, International Journal of Hydrogen Energy 5(1), p.55– 63, (1980).

DOI: 10.1016/0360-3199(80)90114-7

Google Scholar

[20] M. Ni, M. K. Leung, and D. Y. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (soec), International Journal of Hydrogen Energy 33(9), p.2337 –2354, (2008).

DOI: 10.1016/j.ijhydene.2008.02.048

Google Scholar

[21] J. Martinez-Frias, A. -Q. Pham, and S. M. Aceves, A natural gas-assisted steam electrolyzer for high-efficiency production of hydrogen, International Journal of Hydrogen Energy 28(5), p.483 – 490, (2003).

DOI: 10.1016/s0360-3199(02)00135-0

Google Scholar

[22] J. Udagawa, P. Aguiar, and N. Brandon, Hydrogen production through steam electrolysis: Model-based dynamic behaviour of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources 180(1), p.46 – 55, (2008).

DOI: 10.1016/j.jpowsour.2008.02.026

Google Scholar

[23] N. Perdikaris, K. Panopoulos, P. Hofmann, S. Spyrakis, and E. Kakaras, Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells, International Journal of Hydrogen Energy 35(6), p.2446 – 2456, (2010).

DOI: 10.1016/j.ijhydene.2009.07.084

Google Scholar

[24] M. Laguna-Bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, Journal of Power Sources 203(0), p.4 – 16, (2012).

DOI: 10.1016/j.jpowsour.2011.12.019

Google Scholar

[25] A. Sobolewski, . Bartela, A. Skorek-Osikowska, and T. Iluk, Comparison of the economic effi- ciency of chp plants integrated with gazela generator [porównanie efektywności ekonomicznej układów kogeneracyjnych z generatorem gazu procesowego gazela], Rynek Energii 102(5), p.31–37, (2012).

Google Scholar

[26] M. Ni, 2d thermal modeling of a solid oxide electrolyzer cell (soec) for syngas production by h2o/co2 co-electrolysis, International Journal of Hydrogen Energy 37(8), p.6389.

DOI: 10.1016/j.ijhydene.2012.01.072

Google Scholar

[27] J. Stempien, Q. Sun, and S. Chan, Performance of power generation extension system based on solid-oxide electrolyzer cells under various design conditions, Energy 55, p.647–657, (2013).

DOI: 10.1016/j.energy.2013.03.031

Google Scholar

[28] W. Budzianowski, Experimental and numerical study of recuperative heat recirculation, Heat Transfer Engineering 33(8), p.712–721, (2012).

DOI: 10.1080/01457632.2011.635985

Google Scholar

[29] M. Kawabata, O. Kurata, N. Iki, C. Fushimi, and A. Tsutsumi, Analysis of igfc with ex- ergy recuperation and carbon dioxide separation unit, Proceedings of the ASME Turbo Expo 3, p.441–448, (2012).

DOI: 10.1115/gt2012-69999

Google Scholar

[30] D. A. Brunner, S. Marcks, M. Bajpai, A. K. Prasad, and S. G. Advani, Design and char- acterization of an electronically controlled variable flow rate ejector for fuel cell applications, International Journal of Hydrogen Energy 37(5), p.4457 – 4466, (2012).

DOI: 10.1016/j.ijhydene.2011.11.116

Google Scholar