Prospects of Using Bionic Technologies in Oil/Gas Development

Article Preview

Abstract:

Presently there are some challenging technological problems which severely restrain the progress of oil/gas development and production. To address these existing specific challenges, solutions enlightened and obtained from bionics have been applied. This paper reviews the applications of the most influential bionic technologies in the oil/gas development and production engineering, which include bionic non-smooth surface, shape memory polymer, bionic porous material, etc. Some successful field applications of these bionic technologies are described in detail, e.g. the application of the non-smooth theory in the solid expandable tubular technology to reduce friction resistance, and the utilization of bionic porous material as sand control screen to effectively improve sand retention and reduce the influent resistance. The vision of the potential bionic technologies, such as bionic inflow-control devices and nanorobots are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

524-530

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. F. V. Vincent, Making biological materials, J. Bion. Eng., 2 (2005) 209–237.

Google Scholar

[2] L. Q. Ren, J. Q. Li, B. C. Chen, Unsmoothed surface on reducing resistance by bionics. Chin. Sci. Bull., 10 (1995) 77–80.

Google Scholar

[3] P. Gruber, et al., Biomimetics - Materials, Structures and Processes, Springer, Berlin Heidelberg, (2001).

Google Scholar

[4] K. Gao, Y. H. Sun, L. Q. Ren, P. L. Cao, W. T. Li, H. K. Fan, Design and analysis of ternary coupling bionic bits, J. Bion. Eng., 5 (2008) 53-59.

DOI: 10.1016/s1672-6529(08)60072-4

Google Scholar

[5] Y. H. Sun, C. M. Zhong, L. Xu, K. Gao, L. Q. Ren, B. C. Liu, Non-smooth Characteristic on Biological Surface and Development of Bionics Non-smooth Diamond Bit. ICGE 2007, Geological Engineering: Proceedings of the 1st International Conference.

DOI: 10.1115/1.802922.paper42

Google Scholar

[6] K. Gao, Y. H. Sun, R. F. Gao, L. Xu, C. L. Wang, Y. M. Li, Application and prospect of bionic non-smooth theory in drilling engineering, Petrol. Explor. Develop., 36 (2009) 519–522, 540.

Google Scholar

[7] K. K. Dupal, D. B. Campo, J. E. Lofton, D. Weisinger, R. L. Cook, M. D. Bullock, T. P. Grant, P. L. York, SPE/IADC 67770, March 2001, SPE/IADC Drilling conference, the Netherlands.

DOI: 10.2118/67770-ms

Google Scholar

[8] R. D. Mack, T. McCoy, L. Ring, How in situ expansion affects casing and tubing properties", World Oil, 220 (1999) 69-71.

Google Scholar

[9] A. Filippov, R. Mack, L. Cook, P. York, L. Ring, T. McCoy, Expandable tubular solution, SPE 56500, 1999 SPE Annual Technical Conference and Exhibition, Houston, Texas.

DOI: 10.2118/56500-ms

Google Scholar

[10] P. T. Mather, X. Luo, I. A. Rousseau, Aunu. Rev. Mater. Res., 39 (2009) 445-471.

Google Scholar

[11] Q. Meng, J. Hu, Composites: Part A, 40 (2009) 1661-1672.

Google Scholar

[12] A. Lendlein, S. Kelch, Shape-Memory Polymers. Angew. Chem. Int. Ed. 41 (2002) 2034 - (2057).

DOI: 10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-m

Google Scholar

[13] Packer sealing element with shape memory material, US 7743825B2, (2010).

Google Scholar

[14] W. Kitimasak, K. Thirakhupf, D. L. Moll, Eggshell structure of the Siamese Narrow-headed soft shell turtle Chitra Nutphand, Sci. Asia, 29 (2003) 95-98.

Google Scholar

[15] J. Cubo, A. Casinos, The variation of the cross-sectional geometry in the long bones of birds and mammals, Annales des Sciences Naturelles, 1 (1998) 51-62.

DOI: 10.1016/s0003-4339(98)80134-2

Google Scholar

[16] A. C. Jones, A. P. Sheppard, R. M. Sok, C. H. Arns, A. Limaye, H. Averdunk, A. Brandwood, A. Sakellariou, T. J Senden, , B. K. Milthorpe, M. A. Knackstedt, Three-dimensional analysis of cortical bone structure using X-ray micro-computed tomography, Physica A, 339 (2004).

DOI: 10.1016/j.physa.2004.03.046

Google Scholar

[17] J. Z. Zhang, J. g. Wang, J. J. Ma. Porous structures of natural materials and bionic design, J. Zhejiang Uni. Sci., 6A (2005) 1095-1099.

DOI: 10.1631/jzus.2005.a1095

Google Scholar

[18] M.E. Davis, Ordered porous materials for emerging applications, Nature, 417 (2002) 813-822.

Google Scholar

[19] Z. G. Zhu, Metallic foam materials. Physics, 28 (1999) 84 - 88 (in Chinese).

Google Scholar

[20] E. M. A. Maine, M. F. Ashby, Applying the investment methodology for materials (IMM) to aluminum foams, Materials & Design, 23 (2002) 307-319.

DOI: 10.1016/s0261-3069(01)00056-5

Google Scholar

[21] X. Chen, Y. X. Li, Porous metals: research advances and application. Materials, 17 (2003) 4-9 (in Chinese).

Google Scholar

[22] Z. D. Liu, J. L. WANG, Y. H. HUANG, Preparation and Application of Foam Metal, Aviation precision manufacturing technology, 44 (2008) 59-62.

Google Scholar

[23] X. Pei, B. Shi, L. Chen, L. Zheng, Metal Foam Sand Control Screen. 2013 SPE conference, in Press.

Google Scholar

[24] Information on http: /www. glossary. oilfield. slb. com.

Google Scholar

[25] M. M. Saggaf, A vision for future upstream technologies, SPE 109323-MS (2008).

Google Scholar

[26] M. L. Sanni, R. A. Kamal, M. Y. Kanj. Reservoir Nanorobots, Saudi Aramco J. Techno., Spring 2008, 44-52.

Google Scholar

[27] J. Kahn, Nanotechnology, National Geographic, 2006, 98-119.

Google Scholar

[28] Nanoscience and Nanotechnologies: Opportunities and Uncertainties, ISBN 0854036040, (2004).

Google Scholar

[29] Z. Ghalanbor, S. A. Marashi, B. Ranjbar, Nanotechnology Helps Medicine: Nanoscale Swimmers and their Future Applications, Med Hypotheses, 65 (2005) 198-199.

DOI: 10.1016/j.mehy.2005.01.023

Google Scholar

[30] T. Kubik, K. Bogunia-Kubik, M. Sugisaka, Nanotechnology on Duty in Medical Applications, Curr Pharm Biotechnol., 6 (2005) 17-33.

DOI: 10.2174/1389201053167248

Google Scholar

[31] C. D. Montemagno, Integrative Technology for the Twenty-first Century, Ann. NY. Acad. Sci., 1013 (2004) 38- 49.

Google Scholar

[32] T. D. Yuzvinsky, A. M. Fennimore, A. Zettl, Engineering Nanomotor Components from Multi- Walled Carbon Nanotubes via Reactive Ion Etching, AIP Conference Proceedings 723 (2004) 512-515.

DOI: 10.1063/1.1812139

Google Scholar

[33] A. Ferreira, C. Mavroidis, Virtual Reality and Haptics in Nanorobotics: A Review Study, 2006 IEEE Robotics and Automation Magazine.

DOI: 10.1109/mra.2006.1678142

Google Scholar

[34] The Next Giant Leap: Nanotechnology Could Lead to Radical Improvements for Space Exploration. 2005, NASA Headlines.

Google Scholar

[35] B. Behkam, M. Sitti, Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots, J. Dyn. Syst. – T ASME, 128 (2006) 36-43.

DOI: 10.1115/1.2171439

Google Scholar