[1]
J. F. V. Vincent, Making biological materials, J. Bion. Eng., 2 (2005) 209–237.
Google Scholar
[2]
L. Q. Ren, J. Q. Li, B. C. Chen, Unsmoothed surface on reducing resistance by bionics. Chin. Sci. Bull., 10 (1995) 77–80.
Google Scholar
[3]
P. Gruber, et al., Biomimetics - Materials, Structures and Processes, Springer, Berlin Heidelberg, (2001).
Google Scholar
[4]
K. Gao, Y. H. Sun, L. Q. Ren, P. L. Cao, W. T. Li, H. K. Fan, Design and analysis of ternary coupling bionic bits, J. Bion. Eng., 5 (2008) 53-59.
DOI: 10.1016/s1672-6529(08)60072-4
Google Scholar
[5]
Y. H. Sun, C. M. Zhong, L. Xu, K. Gao, L. Q. Ren, B. C. Liu, Non-smooth Characteristic on Biological Surface and Development of Bionics Non-smooth Diamond Bit. ICGE 2007, Geological Engineering: Proceedings of the 1st International Conference.
DOI: 10.1115/1.802922.paper42
Google Scholar
[6]
K. Gao, Y. H. Sun, R. F. Gao, L. Xu, C. L. Wang, Y. M. Li, Application and prospect of bionic non-smooth theory in drilling engineering, Petrol. Explor. Develop., 36 (2009) 519–522, 540.
Google Scholar
[7]
K. K. Dupal, D. B. Campo, J. E. Lofton, D. Weisinger, R. L. Cook, M. D. Bullock, T. P. Grant, P. L. York, SPE/IADC 67770, March 2001, SPE/IADC Drilling conference, the Netherlands.
DOI: 10.2118/67770-ms
Google Scholar
[8]
R. D. Mack, T. McCoy, L. Ring, How in situ expansion affects casing and tubing properties", World Oil, 220 (1999) 69-71.
Google Scholar
[9]
A. Filippov, R. Mack, L. Cook, P. York, L. Ring, T. McCoy, Expandable tubular solution, SPE 56500, 1999 SPE Annual Technical Conference and Exhibition, Houston, Texas.
DOI: 10.2118/56500-ms
Google Scholar
[10]
P. T. Mather, X. Luo, I. A. Rousseau, Aunu. Rev. Mater. Res., 39 (2009) 445-471.
Google Scholar
[11]
Q. Meng, J. Hu, Composites: Part A, 40 (2009) 1661-1672.
Google Scholar
[12]
A. Lendlein, S. Kelch, Shape-Memory Polymers. Angew. Chem. Int. Ed. 41 (2002) 2034 - (2057).
DOI: 10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-m
Google Scholar
[13]
Packer sealing element with shape memory material, US 7743825B2, (2010).
Google Scholar
[14]
W. Kitimasak, K. Thirakhupf, D. L. Moll, Eggshell structure of the Siamese Narrow-headed soft shell turtle Chitra Nutphand, Sci. Asia, 29 (2003) 95-98.
Google Scholar
[15]
J. Cubo, A. Casinos, The variation of the cross-sectional geometry in the long bones of birds and mammals, Annales des Sciences Naturelles, 1 (1998) 51-62.
DOI: 10.1016/s0003-4339(98)80134-2
Google Scholar
[16]
A. C. Jones, A. P. Sheppard, R. M. Sok, C. H. Arns, A. Limaye, H. Averdunk, A. Brandwood, A. Sakellariou, T. J Senden, , B. K. Milthorpe, M. A. Knackstedt, Three-dimensional analysis of cortical bone structure using X-ray micro-computed tomography, Physica A, 339 (2004).
DOI: 10.1016/j.physa.2004.03.046
Google Scholar
[17]
J. Z. Zhang, J. g. Wang, J. J. Ma. Porous structures of natural materials and bionic design, J. Zhejiang Uni. Sci., 6A (2005) 1095-1099.
DOI: 10.1631/jzus.2005.a1095
Google Scholar
[18]
M.E. Davis, Ordered porous materials for emerging applications, Nature, 417 (2002) 813-822.
Google Scholar
[19]
Z. G. Zhu, Metallic foam materials. Physics, 28 (1999) 84 - 88 (in Chinese).
Google Scholar
[20]
E. M. A. Maine, M. F. Ashby, Applying the investment methodology for materials (IMM) to aluminum foams, Materials & Design, 23 (2002) 307-319.
DOI: 10.1016/s0261-3069(01)00056-5
Google Scholar
[21]
X. Chen, Y. X. Li, Porous metals: research advances and application. Materials, 17 (2003) 4-9 (in Chinese).
Google Scholar
[22]
Z. D. Liu, J. L. WANG, Y. H. HUANG, Preparation and Application of Foam Metal, Aviation precision manufacturing technology, 44 (2008) 59-62.
Google Scholar
[23]
X. Pei, B. Shi, L. Chen, L. Zheng, Metal Foam Sand Control Screen. 2013 SPE conference, in Press.
Google Scholar
[24]
Information on http: /www. glossary. oilfield. slb. com.
Google Scholar
[25]
M. M. Saggaf, A vision for future upstream technologies, SPE 109323-MS (2008).
Google Scholar
[26]
M. L. Sanni, R. A. Kamal, M. Y. Kanj. Reservoir Nanorobots, Saudi Aramco J. Techno., Spring 2008, 44-52.
Google Scholar
[27]
J. Kahn, Nanotechnology, National Geographic, 2006, 98-119.
Google Scholar
[28]
Nanoscience and Nanotechnologies: Opportunities and Uncertainties, ISBN 0854036040, (2004).
Google Scholar
[29]
Z. Ghalanbor, S. A. Marashi, B. Ranjbar, Nanotechnology Helps Medicine: Nanoscale Swimmers and their Future Applications, Med Hypotheses, 65 (2005) 198-199.
DOI: 10.1016/j.mehy.2005.01.023
Google Scholar
[30]
T. Kubik, K. Bogunia-Kubik, M. Sugisaka, Nanotechnology on Duty in Medical Applications, Curr Pharm Biotechnol., 6 (2005) 17-33.
DOI: 10.2174/1389201053167248
Google Scholar
[31]
C. D. Montemagno, Integrative Technology for the Twenty-first Century, Ann. NY. Acad. Sci., 1013 (2004) 38- 49.
Google Scholar
[32]
T. D. Yuzvinsky, A. M. Fennimore, A. Zettl, Engineering Nanomotor Components from Multi- Walled Carbon Nanotubes via Reactive Ion Etching, AIP Conference Proceedings 723 (2004) 512-515.
DOI: 10.1063/1.1812139
Google Scholar
[33]
A. Ferreira, C. Mavroidis, Virtual Reality and Haptics in Nanorobotics: A Review Study, 2006 IEEE Robotics and Automation Magazine.
DOI: 10.1109/mra.2006.1678142
Google Scholar
[34]
The Next Giant Leap: Nanotechnology Could Lead to Radical Improvements for Space Exploration. 2005, NASA Headlines.
Google Scholar
[35]
B. Behkam, M. Sitti, Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots, J. Dyn. Syst. – T ASME, 128 (2006) 36-43.
DOI: 10.1115/1.2171439
Google Scholar