[1]
R. M. Hurd, and R. Lane, Principles of very low power electrochemical control devices, Journal of The Electrochemical Society, vol. 104, no. 12, pp.727-730, (1957).
DOI: 10.1149/1.2428464
Google Scholar
[2]
J. Newson, and A. Riddiford, The Kinetics of the Iodine Redox Process at Platinum Electrodes, Journal of The Electrochemical Society, vol. 108, no. 7, pp.699-706, (1961).
DOI: 10.1149/1.2428192
Google Scholar
[3]
V. A. Kozlov, and D. A. Terent'ev, Frequency characteristics of a spatially-confined electrochemical cell under conditions of convective diffusion, Russian Journal of Electrochemistry, vol. 38, no. 9, pp.992-999, Sep, (2002).
Google Scholar
[4]
V. A. Kozlov, and D. A. Terent'ev, Transfer function of a diffusion transducer at frequencies exceeding the thermodynamic frequency, Russian Journal of Electrochemistry, vol. 39, no. 4, pp.401-406, Apr, (2003).
Google Scholar
[5]
Z. Y. Sun, and V. M. Agafonov, 3D numerical simulation of the pressure-driven flow in a four-electrode rectangular micro-electrochemical accelerometer, Sensors and Actuators B-Chemical, vol. 146, no. 1, pp.231-238, Apr 8, (2010).
DOI: 10.1016/j.snb.2010.01.051
Google Scholar
[6]
Z. Y. Sun, and V. M. Agafonov, Computational study of the pressure-driven flow in a four-electrode rectangular micro-electrochemical accelerometer with an infinite aspect ratio, Electrochimica Acta, vol. 55, no. 6, pp.2036-2043, Feb 15, (2010).
DOI: 10.1016/j.electacta.2009.11.030
Google Scholar
[7]
C. A. Taylor, T. J. Hughes, and C. K. Zarins, Finite element modeling of blood flow in arteries, Computer methods in applied mechanics and engineering, vol. 158, no. 1, pp.155-196, (1998).
DOI: 10.1016/s0045-7825(98)80008-x
Google Scholar
[8]
J. Stroud, S. Berger, and D. Saloner, Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture, Journal of biomechanics, vol. 33, no. 4, pp.443-455, (2000).
DOI: 10.1016/s0021-9290(99)00207-9
Google Scholar
[9]
M. Ojha, C. R. Ethier, K. W. Johnston et al., Steady and pulsatile flow fields in an end-to-side arterial anastomosis model, J Vasc Surg, vol. 12, no. 6, pp.747-753, (1990).
DOI: 10.1067/mva.1990.24365
Google Scholar
[10]
C. Bertolotti, and V. r. Deplano, Three-dimensional numerical simulations of flow through a stenosed coronary bypass, Journal of biomechanics, vol. 33, no. 8, pp.1011-1022, (2000).
DOI: 10.1016/s0021-9290(00)00012-9
Google Scholar
[11]
S. Abrassart, R. Stern, and R. Peter, Unstable pelvic ring injury with hemodynamic instability: What seems the best procedure choice and sequence in the initial management?, Orthopaedics & traumatology, surgery & research : OTSR, vol. 99, no. 2, pp.175-82, 2013-Apr, (2013).
DOI: 10.1016/j.otsr.2012.12.014
Google Scholar
[12]
Y. Li, X. -M. Li, and L. -X. Xu, Effects of starch nanospheres solution on hemodynamic values in rats with hemorrhagic shock: A preliminary study in hemorrhagic shock resuscitation, The Journal of surgical research, vol. 181, no. 1, pp.142-5, 2013-May-1, (2013).
DOI: 10.1016/j.jss.2012.06.006
Google Scholar
[13]
H. Takahama, H. Shigematsu, T. Asai et al., Liposomal Amiodarone Augments Anti-arrhythmic Effects and Reduces Hemodynamic Adverse Effects in an Ischemia/Reperfusion Rat Model, Cardiovascular Drugs and Therapy, vol. 27, no. 2, pp.125-132, Apr, (2013).
DOI: 10.1007/s10557-012-6437-6
Google Scholar