The Effects of Mini Implant and Anterior Arch Hook Heights on En Masse Retraction: A Finite Element Analysis

Article Preview

Abstract:

Introduction: An en-masse retraction with mini implant (MI) anchorage may be associated with unwanted intrusion/extrusion and uncontrolled tipping of anterior teeth. An optimum combination of MIs and hooks heights is required for proper treatment results. Materials and Methods: Maxillary finite element models were constructed from a cone beam CT scan of a patient’s orofacial region. The initial tooth displacement at 200g force with 0.019 × 0.025-in stainless steel working archwires engaged in 0.022 brackets slot was assessed. The three-dimensional displacement was examined at various MI and AAH heights. Results: The lower MI position caused extrusion of the central incisors, but the teeth were intruded at higher (6- and 8-mm) MI heights. While the shorter (2- and 4-mm) hooks extruded the central incisors, the higher (6- and 8-mm) intruded the teeth. The higher MI and hooks reduced the palatal tipping of central incisors. The distobucal cusp of the first molar was intruded, while the mesiobucal cusp was extruded in all models: Nonetheless, the shorter hooks and low MI had small molar tipping effects. Conclusions: The higher MIs caused intrusion and less palatal tipping of the central incisors crowns. The increase in hook height resulted into extrusion and reduction in palatal tipping of the central incisors crowns.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

993-1001

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.I. Branemark, R. Adell, U. Breine, B.O. Hansson, J. Lindstrom, A. Ohlsson. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969; 3: 81–100.

DOI: 10.1097/00006534-197107000-00067

Google Scholar

[2] P. Trisi, A. Rebaudi. Progressive bone adaptation of titanium implants during and after orthodontic load in humans. Int J Periodontics Restorative Dent. 2002; 22: 31–43.

Google Scholar

[3] S. Miyawaki, I. Koyama, M. Inoue, K. Mishima, T. Sugahara, T. Takano-Yamamoto. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003; 124: 373–8.

DOI: 10.1016/s0889-5406(03)00565-1

Google Scholar

[4] S.J. Cheng, I.Y. Tseng, J.J. Lee, S.H. Kok. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants. 2004; 19: 100–6.

Google Scholar

[5] T.D. Creekmore, M.K. Eklund. The Possibility of Skeletal Anchorage. J Clin Orthod. 1983; 17: 266-9.

Google Scholar

[6] R. Herman, J.B. Cope. Miniscrew implants: IMTEC mini ortho implants. Semin Orthod. 2005; 11: 32-9.

DOI: 10.1053/j.sodo.2004.11.006

Google Scholar

[7] J.H. Calderón, R.M. Valencia, A.A. Casasa, M.A. Sánchez, R. Espinosa, I. Ceja. Biomechanical anchorage evaluation of mini-implants treated with sandblasting and acid etching in orthodontics. Implant Dent. 2011; 20: 273-9.

DOI: 10.1097/id.0b013e3182167308

Google Scholar

[8] S.H. Kim, J.H. Choi, K.R. Chung, G. Nelson. Do sand blasted with large grit and acid etched surface treated mini-implants remain stationary under orthodontic forces? Angle Orthod. 2012; 82: 304-12.

DOI: 10.2319/032511-212.1

Google Scholar

[9] K.C. Cho, S.H. Baek. Effects of predrilling depth and implant shape on the mechanical properties of orthodontic mini-implants during the insertion procedure. Angle Orthod. 2012; 82: 618-24.

DOI: 10.2319/080911-503.1

Google Scholar

[10] B. Wilmes, D. Drescher. Impact of bone quality, implant type, and implantation site preparation on insertion torques of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Surg. 2011; 40: 697-703.

DOI: 10.1016/j.ijom.2010.08.008

Google Scholar

[11] A. Rebaudi, N. Laffi, S. Benedicenti, F. Angiero, G.E. Romanos. Microcomputed Tomographic Analysis of Bone Reaction at Insertion of Orthodontic Mini-implants in Sheep. Int J Oral Maxillofac Implants. 2011; 26: 1233-40.

Google Scholar

[12] G. Lemieux, A. Hart, C. Cheretakis, C. Goodmurphy, S. Trexler, C. McGary, J.M. Retrouvey. Computed tomographic characterization of mini-implant placement pattern and maximum anchorage force in human cadavers. Am J Orthod Dentofacial Orthop. 2011; 140: 356-65.

DOI: 10.1016/j.ajodo.2010.05.024

Google Scholar

[13] W. Deng, M. Hu, F.M. Machibya. Orthodontic mini-implants: A systematic review. Int. Journal of Clinical Dental Science. 2012; 3: 35-42.

Google Scholar

[14] H.S. Park, S.M. Bae, H.M. Kyung, J.H. Sung. Simultaneous incisor retraction and distal molar movement with microimplant anchorage. World J Orthod. 2004; 5: 164-71.

Google Scholar

[15] S.J. Sung, G.W. Jang, Y.S. Chun, Y.S. Moon. Effective en-masse retraction design with orthodontic mini-implant anchorage: A finite element analysis. Am J Orthod Dentofacial Orthop. 2010; 137: 648-57.

DOI: 10.1016/j.ajodo.2008.06.036

Google Scholar

[16] A. Handa, N. Hegde, V.P. Reddy, B.S. Chandrashekhar, A.V. Arun, S. Mahendra. Effect of the thread pitch of orthodontic mini-implant on bone stress-a 3d finite element analysis. e-Journal of Dentistry. 2011; 1: 91-6.

Google Scholar

[17] F. Yu-bo, Z. Xiao-feng, T. Gao-yan. Three dimensinal finite element periodontal membrane stress cushioning. J Biomedical Engineering 1999; 16: 21-4.

Google Scholar

[18] H.S. Park, S.M. Bae, H.M. Kyung, J.H. Sung. Microimplant anchorage for treatment of skeletal Class I bialveolar protrusion. J Clin Orthod. 2001; 35: 417–22.

Google Scholar

[19] A. Carano, S. Velo, P. Leone, G. Siciliani. Clinical applications of the Miniscrew Anchorage System. J Clin Orthod. 2005; 39: 9-24.

Google Scholar

[20] H.S. Park, T.G. Kwon, J.H. Sung. Nonextraction treatment with microscrew Implants. Angle Orthod 2004; 74: 539–49.

Google Scholar

[21] N.L. Clelland, Y.H. Ismail, H.S. Zaki, D. Pipko. Three dimensional finite element stress analysis in and around the screw vent implant. Int J Oral Maxillofac Implants. 1991; 6: 391-8.

Google Scholar

[22] S.J. Sung, H.S. Baik, Y.S. Moon, H.S. Yu, Y.S. Cho. A comparative evaluation of different compensating curves in the lingual and labial techniques using 3D FEM. Am J Orthod Dentofacial Orthop. 2003; 123: 441-50.

DOI: 10.1067/mod.2003.9

Google Scholar

[23] M. Poppe, C. Bourauel, A. Jager. Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsyspecimens and their conversion into finite element models. J Orofac Orthop. 2002; 63: 358-70.

DOI: 10.1007/s00056-002-0067-8

Google Scholar

[24] A. Ziegler, L. Keilig, A. Kawarizadeh, A. Jager, C. Bourauel. Numerical simulation of the biomechanical behaviour of multi-rooted teeth. Eur J Orthod. 2005; 27: 333-9.

DOI: 10.1093/ejo/cji020

Google Scholar

[25] R.C. Thurow. Edgewise orthodontics. St Louis: C.V. Mosby; 1982. pp.19-25.

Google Scholar

[26] H.S. Park, T.G. Kwon, O.W. Kwon. Treatment of open bite with microscrew implant anchorage Am J Orthod Dentofacial Orthop. 2004; 126: 627-36.

DOI: 10.1016/j.ajodo.2003.07.019

Google Scholar

[27] G. Radziminski. The control of horizontal planes in Class II treatment. J Charles Tweed Found. 1987; 15: 125-40.

Google Scholar

[28] H.A. Klontz, Facial balance and harmony: an attainable objective for the patient with high mandibular plane angle. Am J Orthod Dentofacial Orthop. 1998; 114: 176-188.

DOI: 10.1053/od.1998.v114.a80850

Google Scholar