High Birefringent Terahertz Photonic Crystal Fiber Based on Material-Filled Structure

Article Preview

Abstract:

A novel kind of high birefringent terahertz (THz) photonic crystal fibers (PCFs) with material-filled structure is proposed in this paper. Based on the material-filled technology, which different materials are selectively filled into four air holes of the inner first circle near the central core in the designed THz PCFs, high birefringence are obtained from the structural and material-filled induced asymmetry in large frequency ranges near 1THz. Modal birefringence with different structural parameters and diverse refractive indices of the filled materials are investigated by plane wave expansion (PWE) method. The numerical results show that high birefringence up to 10-3 can be obtained and its structure is simpler than that of the early proposed highly birefringent THz PCFs. It is helpful for PCFs design and real fabrication in the potential THz applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

599-603

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Lee, M.C. Wanke: Science Vol. 316 (2007), p.64.

Google Scholar

[2] C. Sirtori: Nature Vol. 417 (2002), p.132.

Google Scholar

[3] J. Zhang, D. Grischkowsky: Opt. Lett. Vol. 29 (2004), p.1617.

Google Scholar

[4] Q. Chen, Z.P. Jiang, G.X. Xu, X.C. Zhang: Opt. Lett. Vol. 25 (2000), p.1122.

Google Scholar

[5] R.H. Jacobsen, D.M. Mittleman, M.C. Nuss: Opt. Lett. Vol. 21 (1996), p. (2011).

Google Scholar

[6] J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin: Opt. Lett. Vol. 21 (1996), p.1547.

Google Scholar

[7] J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russell: Science Vol. 282 (1998), p.1476.

Google Scholar

[8] X. Tang, Y. Shi: Opt. Engineering Vol. 51(2012), p.025001.

Google Scholar

[9] H. Chen, H. Wang, H. Hou, D. Chen: Optics Commun. Vol. 285 (2012), p.3726.

Google Scholar

[10] J. Liang, L. Ren, N. Chen, C. Zhou: Optics Commun. Vol. 295 (2013), p.257.

Google Scholar

[11] L. Vincetti, V. Setti: Opt. Fiber Technol. Vol. 19 (2013), p.31.

Google Scholar

[12] L. Wang, D. Yang: Opt. Express Vol. 15 (2007), p.8892.

Google Scholar

[13] T. Yang, L. Shen, Y. Chau, M. Sung, D. Chen, D. Tsai: Opt. Commun. Vol. 281 (2008), p.4334.

Google Scholar

[14] D.C. Zografopoulos, E.E. Kriezis: J. Lightw. Technol. Vol. 27 (2009), p.773.

Google Scholar

[15] J.H. Liou, S.S. Huang, C.P. Yu: Opt. Commun. Vol. 283 (2010), p.971.

Google Scholar

[16] D.R. Chen, L.F. Shen: J. Lightw. Technol. Vol. 25 (2010), p.2700.

Google Scholar

[17] J. Tang, Z. Zhang, D. Luo, M. Chen, H. Chen: Opt. Engineering Vol. 52(2013), p.014004.

Google Scholar

[18] Y. Hou, F. Fan, Z. Jiang, X. Wang, S. Chang: Optik Vol. 124 (2013), p.3095.

Google Scholar

[19] D. Chen and H.Y. Tam: J. Lightw. Technol. Vol. 28 (2010), p.1858.

Google Scholar

[20] K.M. Ho, C.T. Chan, and C.M. Soukoulis: Phys. Rev. Lett. Vol. 65 (1990), p.3152.

Google Scholar