Electrochemical Performance of Hard Carbon as Negative Electrode in Lithium Ion Capacitor

Article Preview

Abstract:

The electrochemical properties of hard carbon (HC) have been investigated for use as negative electrode for lithium ion capacitors. The HC electrode was characterized by scanning electron microscope (SEM) method. The HC negative electrode was galvanostatically prelithiated at 0.1C for three cycles between 0.05-2 V. The LIC with activated carbon and HC electrodes was characterized by cyclic voltammetric analysis at the scan rate of 0.1 mV s-1 with different voltage ranges. The rate capability of the LIC was tested up to 100C and the retention is 54 %. The cycle performance is retained up to 86% at 50C and 80% at 100C even after 10,000 cycles. The results indicate that hard carbon is suitable as negative electrode materials for high power energy applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

587-590

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Simon, Y. Gogotsi: Nat. Mater. Vol 7 (2008), p.845.

Google Scholar

[2] A. G. Pandolfo, A. F. Hollenkamp: J. Power Sources Vol 157 (2006), p.11.

Google Scholar

[3] A. Burke: Electrochim. Acta Vol 53 (2007), p.1083.

Google Scholar

[4] S. R. Sivakkumar, J. Y. Nerkar, A. G. Pandolfo: Electrochim. Acta Vol 55 (2010), p.3330.

Google Scholar

[5] N. Bockenfeld, R. -S. Kuhnel. S. Passerini, M. Winter, A. Balducci: J. Power Sources Vol 196 (2011), p.4136.

Google Scholar

[6] J. H. Lee, W. H. Shin, M. H. Ryou, J. K. Jin, J. Kim. J. W. Choi: ChemSusChem Vol 5 (2012), p.2328.

Google Scholar

[7] N. Omar, M. Daowd, O. Hegazy, M. Al Sakka, Th. Coosemans, P. Van den Bossche, J. Van Mierlo: Electrochim. Acta Vol 86 (2012), p.305.

DOI: 10.1016/j.electacta.2012.03.026

Google Scholar

[8] W. -Z. Chen, X. -J. Liu, P. -Q. Dai, Y. -L. Chen, Z. -Y. Jiang: Adv. Mater. Res. Vol 482-484 (2012), p.448.

Google Scholar

[9] J. -H. Kim, J. -S. Kim, Y. -G. Lim, J. -G. Lee, Y. -J. Kim: J. Power Sources Vol 196 (2011), p.10490.

Google Scholar

[10] H. Sun, X. -M. He, J. -G. Ren, J. -J. Li, C. -Y. Jiang, C. -R. Wan: Electrochim. Acta Vol 52 (2007), p.4312.

Google Scholar

[11] M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak: Adv. Mater. Vol 10 (1998), p.725.

Google Scholar

[12] E. Buiel, J. R. Dahn: Electrochim. Acta Vol 45 (1999), p.121.

Google Scholar

[13] H. Shi: J. Power Sources Vol 75 (1998), p.64.

Google Scholar

[14] H. J. Gores, J. M. G. Barthel: Pure Appl. Chem. Vol 67 (1995), p.919.

Google Scholar