[1]
HUANG Guangjie, JIANG Lingyun: Effect of Heat Treatment Process on Structure and Properties of 2024 Aluminum Alloy. Journal of Chongqing University: Natural Science Edition. 2000, 23(4): 99-102.
Google Scholar
[2]
WANG Shuhong, MA Kangmin, MA Jun: Method of Measuring the Residual Stress Distribution in Pre-stretched Aluminum Alloy Plate 7075T7351[J]. Journal of Air Force Engineering University :Natural Science Edition; 2004, 5(3)18-21.
Google Scholar
[3]
ZHANG Yuanyuan, WU Yunxin, LI Limin, et al: Finite Element Simulation of Residual Stress in Pre-stretching Thick-plates of 7075 Aluminum Alloy After Quenching[J]. Hot Working Technology. 2008, 37(4): 88-91.
Google Scholar
[4]
WANG Cong, LUO Binghui, XIONG Wenying, et al: Effect of pre-stretching on microstructure and mechanical properties of 2024 aluminum alloy plate[J]. Light Alloy Fabrication Technology. 2011, 39(10): 63-68.
Google Scholar
[5]
XIAO Daihong, WANG Jiannong, DING Dongyan: Effect of the Pre-stretching Treatment on the Properties and Precipitation of Al-Cu-Mg-Ag Alloy[J]. Hot Working Technology, 2003(4): 1-5.
Google Scholar
[6]
NING Ailin, LIU Zhiyi, LIU Zengming: Effects of Aging on Mechanical Properties of 2024Aluminum Alloy by Severe Cold Plastic Deformation[J]. Special Casting & Nonferrous Alloys, 2006, 26(8): 529-532.
Google Scholar
[7]
LI Huizhong, LI zhou, LIANG Xaiopeng, et al: Effect of Pre-deformation on Microstructures and Mechanical Properties of Al-Cu-Mn-Mg-Ag Aluminum Alloy[J]. JOURNAL OF AERONAUTICAL MATERIALS, 2009, 29(2): 29-33.
Google Scholar
[8]
LI Rongfeng: Development of Biaxial Tensile Testing Technology[J]. Engineering and Test, 2011, 12: 1-4.
Google Scholar
[9]
P. Tiernan, A. Hannon: Design optimisation of biaxial tensile test specimenusing finite element analysis[J]. Int J Mater Form, DOI 10. 1007/s12289-012-1105-8.
DOI: 10.1007/s12289-012-1105-8
Google Scholar
[10]
REN Jiatao, LI Gangling, DOU Zhiwu, et al: Biaxial Tension Test and the Strengthening of Titanium Sheets under Biaxial Tension. Journal of Experimental Mechanics[J], 2001, 16(2): 196-206.
Google Scholar
[11]
The national standardization technical committee of non-ferrous metals. Wrought aluminum and aluminum alloys heat treatment[S]. Beijing Standards Press, (2006).
Google Scholar
[12]
The national standardization technical committee of forging. Sheet metal formability and test methods-Forming limit diagram(FLD) test[S]. Beijing Standards Press, (1995).
Google Scholar
[13]
National Bureau of Standards. Values of hardness and strength for aluminum alloys conversion tables[S]. Beijing Standards Press, (1983).
Google Scholar
[14]
WILSON R N, PARTRIDGE P G: The nucleation and growth of S' precipitates in an aluminium-2. 5%copper-1. 2%magnesium alloy[J]. Acta Metall, 1965, 13(12): 1321-1327.
DOI: 10.1016/0001-6160(65)90043-x
Google Scholar
[15]
JENA A K, GUPTA A K, CHATURVEDI M C: A differential scanning calorimetric investigation of precipitation kinetics in the Al-1. 53wt%Cu-0. 79wt% Mg alloy[J]. Aeta Metall, 1989, 37(3): 85-90.
DOI: 10.1016/0001-6160(89)90015-1
Google Scholar
[16]
WANG Xiuzhi, LI Hai, WEI Xiuyu, et al: Effects of Prior Strain on Static Tensile Properties and Fatigue Lives of 2E12 Aluminum Alloy[J]. RARE METAL MATERIALS AND ENGINEERING, 2010, 39(1): 138-141.
Google Scholar
[17]
ZHANG Xinming, LIU Ling, JIA Yuzhen: Effects of stretching and rolling pre-deformation on microstructures and mechanical properties of 2519A aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(6):1087-1093.
Google Scholar