Effect of the Sheet Thickness on the Electrochemical Performance of 2-D SnO2 Nanomaterial as Li Ion Battery Anode Material

Article Preview

Abstract:

2-D SnO2 nanosheets with controllable thickness have been synthesized via a simple hydrothermal method. Characterization shows that the sheet thickness can be controlled from 3 to 30 nm. The correlation between the sheet thickness and the electrochemical performance of these samples as anode materials for Li ion batteries were investigated, it was found that when the sheet thickness less than 10 nm, electrodes with high charge/discharge capacities, coulombic efficiencies and stable cycling performance could be realized. The good electrochemical performance are ascribe to the ultra thin nanosheet, good flexility and porous structure of the SnO2 anode material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

720-724

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. A. Coutney, W. R. McKinnon and J. R. Dahn: J. Electrochem. Soc. Vol. 146(1999), p.59.

Google Scholar

[2] W. Wei, Z. Wang, Z. Liu, Y. Liu, L. He, D. Chen, A. Umar, L. Guo and J. Li: J. Power Sources Vol. 238(2013), p.376.

Google Scholar

[3] H. Ohgi, T. Maeda, E. Hosono, S. Fujihara and H. Imai: Crystal Growth & Design. Vol. 5(2005), p.1079.

Google Scholar

[4] (a) C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang and J. Z. Jiang: J. AM. CHEM. SOC. Vol. 132(2010), p.46. (b) C. Wang, G. Du, K. Ståhl, H. Huang, Y. Zhong and J. Z. Jiang: J. Phys. Chem. C. Vol. 116(2012), p.4000.

Google Scholar

[5] W. Wei, D. Chen, R. Wang and L. Guo: Nanotechnology Vol. 23(2012), p.475401.

Google Scholar

[6] C. Li, W. Wei, S. Fang, H. Wang, Y. Zhang, Y. Gui and R. Chen: J. Power Sources Vol. 195(2010), p.2939.

Google Scholar

[7] G. He, G. Pan, M. Zhang and Z. Wu: J. Phys. Chem. C Vol. 113(2009), p.17076.

Google Scholar

[8] M. Winter and J. O. Besenhard: Electrchim. Acta Vol. 45(1999), p.31.

Google Scholar

[9] R. Dominko, D. Arčon, A. Mrzel, A. Zorko, P. Venturini, M. Gaberscek, M. Remskar and D. Mihailovic: Adv. Mater. Vol. 14(2002), p.1531.

DOI: 10.1002/1521-4095(20021104)14:21<1531::aid-adma1531>3.0.co;2-p

Google Scholar

[10] H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara: Adv. Mater. Vol. 15(2003), p.2107.

Google Scholar

[11] Y. Wang, F. Su, J. Y. Lee and X. S. Zhao: Chem. Mater. Vol. 18(2006), p.1347.

Google Scholar

[12] I. A. Courtney and J. R. Dahn: J. Electrochem. Soc. Vol. 144(1997), p.2943.

Google Scholar

[13] O. Mao, R. A. Dunlab, I. A. Courtney and J. R. Dahn: J. Electrochem. Soc. Vol. 145(1998), p.4195.

Google Scholar

[14] I. A. Courtney, R. A. Dunlab and J. R. Dahn: Elechrochim. Acta. Vol. 45(1999), 51.

Google Scholar

[15] T. Brousse, R. Retoux, U. Herterich and D. M. Schleich: J. Electrochem. Soc. Vol. 145(1998), p.1.

Google Scholar

[16] H. Li, P. Balaya and J. Maier: J. Electrochem. Soc. Vol. 151(2004), p. A1878.

Google Scholar

[17] S. Han, B. Jang, T. Kim, S. M. Oh and T. Hyeon: Adv. Fuct. Mater. Vol. 15(2005), p.1845.

Google Scholar