Homogeneous in Distribution of InGaN/GaN Quantum Wells in High Performance GaN-Based Light-Emitting Devices

Article Preview

Abstract:

We have investigated the effect of well growth rate on threshold current and slope efficiency of GaN-based laser diodes (LDs). The lasing performance was significantly dependent on optical and crystal quality of In0.08Ga0.92N/ GaN QWs with different well growth rates. The InGaN QWs grown with lower growth rate represented better interface quality and had low surface defects in the InGaN/GaN QW region. In addition, InGaN QWs grown with lower growth rate exhibited the higher optical properties such as the higher PL intensity and the smaller blueshift with increasing excitation power density. The present results suggest that optical and crystal qualities of InGaN/InGaN MQW are significantly improved by lowering well growth rate, resulting in the increase of slope efficiency and the decrease of threshold current density in GaN-based LDs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

715-719

Citation:

Online since:

January 2014

Keywords:

GaN, LD, LED, QW

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, J. Electron. Mater. Vol. 21 (1992), p.157.

Google Scholar

[2] S. Keller, B. P. Keller, D. Kapolnek, U. K. Mishra, S. P. DenBaars, I. K. Shmagin, R. M Kolbas, and S. Krishnankutty, J. Cryst. Growth. Vol. 170 (1997), p.349.

DOI: 10.1016/s0022-0248(96)00553-2

Google Scholar

[3] S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, S. P. DenBaars, J. Cryst. Growth, Vol. 195 (1998), p.285.

Google Scholar

[4] S. Nakamura, Microelectron. J. Vol. 25 (1994), p.165.

Google Scholar

[5] S. Keller, U. K. Moshra, S. P. Denbaars, and W. Seifert, Jpn. J. Appl. Phys. Vol. 37 (1998), p. L431.

Google Scholar

[6] C. -K. Sun, T. -L. Chiu, S. Keller, G. Wang, M. S. Minsky, S. P. DenBaars, and J. E. Bowers, Appl. Phys. Lett. Vol. 71 (1997), p.425.

Google Scholar

[7] S. N. Lee, T. Sakong, W. Lee, H. S. Paek, M. S. Seon, I. H. Lee, O. Nam, and Y. Park, J. Cryst. Growth, Vol. 250, (2003), p.256.

Google Scholar

[8] S. N. Lee, J. Kim, K. K. Kim, H. Kim, H. K. Kim, J. Appl. Phys. Vol. 108 (2010), p.102813.

Google Scholar

[9] J. K. Son, S. N. Lee, H. S. Paek, T. Sakong, H. K. Kim, Y. Park, H. Y. Ryu, O. H. Nam, J. S. Hwang, Y. H. Cho, J. Appl. Phys. Vol. 103 (2008), p.103101.

Google Scholar

[10] S. N. Lee, S. Y. Cho, H. Y, Ryu, J. K. Son, H. S. Paek, T. Sakong, T. Jang, K. K. Choi, K. H. Ha, M. H. Yang, O. H. Nam, Y. Park, Appl. Phys. Lett., Vol. 88. (2006), p.111101.

DOI: 10.1063/1.2185251

Google Scholar

[11] X. H. Wu, L. M. Brown, D. Kapolnek, S. Keller, B. Keller, S. P. DenBaarss, and J. S. Speck, J. Appl. Phys. 80 (1996) 3228.K. Uchida, T. Tang, S. Goto, T. Mishima, A. Niwa, and J. Gotoh, Appl. Phys. Lett. 74 (1999), p.1153.

DOI: 10.1063/1.123471

Google Scholar

[12] E. Oh, C. Sone, O. Nam, H. S. Park, and Y. Park, Appl. Phys. Lett. Vol. 76 (2000), p.3242.

Google Scholar