Production of Composite Material by FDM Rapid Prototyping Technology

Article Preview

Abstract:

In the paper is presented information about common and advanced materials used for manufacturing of products by Fused Deposition Modelling (FDM) rapid prototyping technology. In different rapid prototyping technologies the initial state of material can come in either solid, liquid or powder state. The current range materials include paper, nylon, wax, resins, metals and ceramics. In FDM are mainly used as basic materials ABS - Acrylonitrile Butadiene Styrene, polyamide, polycarbonate, polyethylene and polypropylene. Main part of the paper is focused on experimental production and testing of composite material produced by rapid prototyping realized by Fused Deposition Modelling (FDM) method and presents outputs of testing of ABS/glass texture material realized by authors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-191

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. K. Chua, K. F. Leong, C. S. Lim, Rapid Prototyping: Principles and Applications, World Scientific Publishing, Singapore (2003), p.420.

Google Scholar

[2] Plancak, M.: Rapid Prototyping & Rapid Tooling. FTN Publishing, Novi Sad (2009).

Google Scholar

[3] R. Pacurar, A. Pacurar, P. Berce, N. Balc, O. Nemes, Porosity change by resin impregnation in structures obtained by selective laser sintering technology. Studia Universitatis Babes-Bolyai Chemia, No. 3 (2012), pp.5-13, ISSN 1224-7154.

DOI: 10.24193/subbchem

Google Scholar

[4] I. Buransky, L. Morovic, J. Peterka Aplication of reverse engineering for redesing and manufacturing of a printer spare part. Advanced Materials Research, Vol. 690693 (2013), pp.2708-2712, ISSN 1022-6680.

DOI: 10.4028/www.scientific.net/amr.690-693.2708

Google Scholar

[5] I. Gajdos, J. Slota, Influence of printing conditions on structure in FDM prototypes. Tehnicki Vjesnik, Vol. 20, No. 2 (2013), pp.231-236, ISSN 1330-3651.

Google Scholar

[6] J. N. Marcincin, J. Barna, L. N. Marcincinova, V. Fecova, Analyses and Solutions on Technical and Economical Aspects of Rapid Prototyping Technology. Tehnicki Vjesnik, Vol. 18, No. 4 (2011), pp.657-661, ISSN 1330-3651.

DOI: 10.1063/1.4707641

Google Scholar

[7] L. Novakova-Marcincinova, J. Novak-Marcincin, Testing of the ABS materials for application in fused deposition modeling technology. Applied Mechanics and Materials, Vol. 309 (2013), pp.133-140, ISSN 1660-9336.

DOI: 10.4028/www.scientific.net/amm.309.133

Google Scholar

[8] L. Novakova-Marcincinova, J. Novak-Marcincin, Selected testing for rapid prototyping technology operation. Applied Mechanics and Materials, Vol. 308 (2013), pp.25-31.

DOI: 10.4028/www.scientific.net/amm.308.25

Google Scholar

[9] J. Novak-Marcincin, L. Novakova-Marcincinova, J. Barna, M. Janak, Application of FDM rapid prototyping technology in experimental gearbox development process. Tehnicki Vjesnik, Vol. 19, No. 3 (2012), pp.689-694, ISSN 1330-3651.

DOI: 10.1109/ines.2011.5954723

Google Scholar

[10] L. N. Marcincinova, J. Barna, V. Fecova, M. Janak, J. N. Marcincin, Intelligent design of experimental gearbox with rapid prototyping technology support. In: INES 2011, International Conference on Intelligent Engineering Systems, Poprad (2011).

DOI: 10.1109/ines.2011.5954723

Google Scholar

[11] J. Novak-Marcincin, M. Janak, L. Novakova-Marcincinova, Increasing of Product Quality Produced by Rapid Prototyping Technology. Manufacturing Technology, Vol. 12, No. 12 (2012), pp.71-75, ISSN 1213-2489.

DOI: 10.21062/ujep/x.2012/a/1213-2489/mt/12/1/71

Google Scholar

[12] L. N. Marcincinova, V. Fecova, J. N. Marcincin, M. Janak, J. Barna, Effective Utilization of Rapid Prototyping Technology. Materials Science Forum, Vol. 713 (2012), pp.61-66, ISSN 1662-9752.

DOI: 10.4028/www.scientific.net/msf.713.61

Google Scholar

[13] L. N. Marcincinova, M. Janak, Application of Progressive Materials for Rapid Prototyping Technology. Manufacturing Technology, Vol. 12, No. 12 (2012), pp.75-79, ISSN 1213-2489.

DOI: 10.21062/ujep/x.2012/a/1213-2489/mt/12/1/75

Google Scholar

[14] L. Novakova-Marcincinova, J. Novak-Marcincin, J. Barna, J. Torok, Special materials used in FDM rapid prototyping technology application. INES 2012 - IEEE 16th International Conference on Intelligent Engineering Systems, Proceedings, art. no. 6249805 (2012).

DOI: 10.1109/ines.2012.6249805

Google Scholar

[15] L. Novakova-Marcincinova, V. Fecova, J. Novak-Marcincin, M. Janak, J. Barna, Effective Utilization of Rapid Prototyping Technology. AIP Conference Proceedings, Vol. 1431 (2012), pp.834-841, ISSN 0094-243X.

DOI: 10.1063/1.4707641

Google Scholar

[16] L. Novakova-Marcincinova, J. Novak-Marcincin, J. Barna, J. Torok, Selected experimental tests of materials used in rapid prototyping area. Manufacturing Technology, Vol. 13, No. 2 (2013), pp.220-226, ISSN 1213-2489.

DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/2/220

Google Scholar