Adaptive Control System to Assist the Surface Workpiece Quality when Drilling

Article Preview

Abstract:

Article deals with design of adaptive control system for drilling process of aerospace critical components. The system proposed in this paper is directed towards real the time control of surface roughness parameter Ra. Proposed model for monitoring and control consists of surface roughness prediction system and decision making subsystem. The artificial neural network was employed to calculate surface roughness parameter Ra through of process monitoring indices such as torque Mz, force Fz, power P and cutting conditions feed f, cutting speed vc. Test samples were nickel based super alloy Udimet 720 used as a basic constructional material of discs for gas turbine engines.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-217

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Chryssolouris, Manufacturing Systems: Theory and Practice, 2nd Edition 606p, New York, (2005).

Google Scholar

[2] F. Klocke, S. Gierlings, M. Brockmann, C. Sage, D. Veselovac, Adaptive Control of Manufacturing Processes for a New Generation of Jet Engine Components, 7th CIRP-ICME. (2010) 321.

Google Scholar

[3] M. Eckstein, Process Monitoring – Ein innovativer Ansatz zur Steigerung der Zuverlässigkeit höchstbelasteter Bauteile der Fluggasturbine, Deutscher Luft- u. Raumfahrtkongress. (2004) Jahrbuch.

Google Scholar

[4] P.G. Benardos, G.C. Vosniakos, Predicting surface roughness in machining: a review, Int. Jour. of Mach. Tool and Manuf. 43 (2003) 833–844.

DOI: 10.1016/s0890-6955(03)00059-2

Google Scholar

[5] M. Gunay, E. Yucel, Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron, Measurement. 46 (2013) 913–919.

DOI: 10.1016/j.measurement.2012.10.013

Google Scholar

[6] H. Oktem, T. Erzurumlu, F. Erzincanli, Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm, Mat. and Desig. 27 (2006) 735–744.

DOI: 10.1016/j.matdes.2005.01.010

Google Scholar

[7] J. Paulo Davim, V. N. Gaitonde, S. R. Karnik, Investigation into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models, J. of Mat. Proces. Tech. 205 (2008) 16–23.

DOI: 10.1016/j.jmatprotec.2007.11.082

Google Scholar

[8] E. D. Kirby, J. C. Chen, J. Z. Zhang, Development of a fuzzy-nets-based in-process surface roughness adaptive control system in turning operations, Ex. Sys. with Applic. 30 (2006) 529–604.

DOI: 10.1016/j.eswa.2005.07.005

Google Scholar

[9] F. J. Pontes, A. P. de Paiva, P. P. Belastrassi, J. R. Ferreira, Optimization of Radial Basis Function neural network employed for prediction of surface roughness in hard turning process using Taguchi´s orthogonal arrays, Ex. Sys. with Applic. 39 (2012).

DOI: 10.1016/j.eswa.2012.01.058

Google Scholar

[10] I. Asilturk, M. Cunkas, Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method, Ex. Sys. with Applic. 38 (2011) 5826–5832.

DOI: 10.1016/j.eswa.2010.11.041

Google Scholar

[11] V. Upadhyay, P. K. Jain, N. K. Mehta, In-process prediction of surface roughness in turning of Ti-6Al-4V alloy using cutting parameters and vibration signals, Measurement. 46 (2013) 154–160.

DOI: 10.1016/j.measurement.2012.06.002

Google Scholar

[12] A. Popa, G. Dessein, M. Baili, V. Dutilh, Investigation of Tool Failure Modes and Machining Disturbances Using Monitoring Signals, Int. Jour. of Adv. Mat. Research. 423 (2012) 128-142.

DOI: 10.4028/www.scientific.net/amr.423.128

Google Scholar

[13] I. Maňková, M. Vrabeľ, P. Kovač, Artificial neural network application for surface roughness prediction when drilling nickel based alloy, Manuf. Technology. 13 (2013) 193-199.

DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/2/193

Google Scholar