[1]
F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender Systems Handbook, Springer, (2011).
Google Scholar
[2]
G. Takács, I. Pilászy, B. Németh, D. Tikk, The Journal of Machine Learning Research Vol. 10 (2009), pp.623-656.
Google Scholar
[3]
Information on: http: /www. amazon. com.
Google Scholar
[4]
Information on: http: /www. netflix. com.
Google Scholar
[5]
G. Adomavicius and A. Tuzhilin, Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions, IEEE Transactions on Knowledge and Data Engineering, Vol. 17. 6 (2005), pp.734-749.
DOI: 10.1109/tkde.2005.99
Google Scholar
[6]
Y. Koren, Factor in the neighbors: Scalable and accurate collaborative filtering, ACM Transactions on Knowledge Discovery from Data (TKDD) Vol. 4 (2010), p.1.
DOI: 10.1145/1644873.1644874
Google Scholar
[7]
Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, " Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, (2008).
DOI: 10.1145/1401890.1401944
Google Scholar
[8]
Y. Koren, R. Bell, C. Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, Vol. 42 (2009), pp.30-37.
DOI: 10.1109/mc.2009.263
Google Scholar
[9]
B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application of Dimensionality Reduction in Recommender System – A Case Study, In Proceedings of ACM SIGKDD Conference on Knowledge Discovery in Databases, (2000).
DOI: 10.21236/ada439541
Google Scholar
[10]
M. Kurucz, A. A. Benczur, and B. Torma, Methods for large scale svd with missing values, Proceedings of KDD Cup and Workshop, Vol. 12(2007), pp.51-55.
Google Scholar
[11]
A. Paterek, Improving regularized singular value decomposition for collaborative filtering, Proceedings of KDD Cup and Workshop, Vol. 2007, (2007).
Google Scholar
[12]
Information on: http: /sifter. org/~simon/journal/20061211. html.
Google Scholar
[13]
R. M. Bell and Y. Koren, Scalable collaborative filtering with jointly derived neighborhood interpolation weights, Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference. Oct. 28-3, 2007, pp.43-52.
DOI: 10.1109/icdm.2007.90
Google Scholar
[14]
R. Salakhutdinov and A. Mnih, Probabilistic matrix factorization, Advances in neural information processing systems, Vol. 20 (2008), pp.1257-1264.
Google Scholar
[15]
P. Melville, R. J. Mooney, and R. Nagarajan, Content-boosted collaborative filtering for improved recommendation, Proceedings of the National Conference on Artificial Intelligence, 2002, p.187–192.
Google Scholar
[16]
Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-Thieme, Learning attribute-to-feature mappings for cold-start recommendations, 2010 IEEE 10th International Conference on Data Mining (ICDM), IEEE, Dec. 13-17, 2010, pp.176-185.
DOI: 10.1109/icdm.2010.129
Google Scholar