Innovative Concepts for Newborn Pain Based Systems with Hu Moment and Similar Classifier

Article Preview

Abstract:

Image analysis of infant pain has been proven to be an excellent tool in the area of automatic detection of pathological status of an infant. This paper investigates the application of parameter weighting for invariant moments to provide the robust representation of infant pain images. Two classes of infant images were considered such as normal images, and babies in pain. A Similar Classifier is suggested to classify the infant images into normal and pathological images. Similar Classifier is trained with different spread factor or smoothing parameter to obtain better classification accuracy. The experimental results demonstrate that the suggested features and classification algorithms give very promising classification accuracy of above 89.54% and it expounds that the suggested method can be used to help medical professionals for diagnosing pathological status of an infant from face images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1098-1103

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. C, Chuang, Shih F. Y., and. Slack M. R. Machine recognition and representation of neonatal facial displays of acute pain, Artificial Intelligence in Medicine 36(2), 2006, pp.211-222.

DOI: 10.1016/j.artmed.2004.12.003

Google Scholar

[2] S. Brahnam, C. Chuang, S. S Randal, and Y. S Frank. Machine assessment of neonatal facial expressions of acute pain, Decision Support Systems 43, 2007, pp.1242-125.

DOI: 10.1016/j.dss.2006.02.004

Google Scholar

[3] S. Brahnam , L. Nanni, and S. Randall. Introduction to neonatal facial pain detection using common and advanced face classification techniques, Advanced Computation Intelligence Paradigms in Healthcare, 1, Studies in Computational Intelligence (SCI) Series: Springer-Verlag, Berlin, 48, 2004, pp.225-253.

DOI: 10.1007/978-3-540-47527-9_9

Google Scholar

[4] S. Brahnam, F. C Cgao, Y. S Frank, and R. S Melinda. SVM classification of neonatal facial image of pain, Proceedings of the 6th International Workshop on Fuzzy Login and Applications (WILF05).

Google Scholar

[5] S. Brahnam and L. Nanni , Neonatal facial pain detection using NNSOA and LSVM, Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV08), Las Vegas, vol. 2, 2008, pp.352-357.

Google Scholar

[6] L. Nanni, S. Brahnam, A. Lumini. A local approach based on a local binary patterns variant texture descriptor for classifying pain states., Expert Systems with Applications 37(11) pp.7888-7894.

DOI: 10.1016/j.eswa.2010.04.048

Google Scholar

[7] S. Brahnam, C. F. Chuang, F. Y. Shih, and M. R. Slack, SVM classification of neonatal facial images of pain, Fuzzy Logic and Applications, Isabelle Bloch, Alfredo Petrosino, Andrea G. B. Tettamanzi, editors, Lecture Notes in Computer Science, 3849, pp.111-115.

DOI: 10.1007/11676935_15

Google Scholar

[8] K. Pun, and Y. Moon, Recent advances in ear biometrics., pp.144-149, (2004).

Google Scholar

[9] C. Rafael Gonzalez, E. Richard Woods and L. Steven Eddins (2004). Digital Image Processing using MATLAB. Pearson Education. ISBN 978-81-7758-898-9.

Google Scholar

[10] Spence K., Gillies D., Harrison D., Johnston L., Nagy S. A. Reliable pain assessment tool for clinical assessment in the neonatal intensive care unit. J Obstet Gynecol Neonatal Nurs. 2003; 34: 80-86.

DOI: 10.1177/0884217504272810

Google Scholar

[11] Cignacco E., Mueller R., Hamers J.P.H. , Gessler P. Pain assessment in the neonate using the Bernese Pain Scale for Newborns. Early Hum Dev. 2004; 78: 115-121.

DOI: 10.1016/j.earlhumdev.2004.04.001

Google Scholar

[12] Lawrence J., Alcock D., McGrath P., Kay S., MacMurray S. B., Dulberg D. The development of a tool to assess neonatal pain. Neonatal Netw. 1993; 11: 59-66.

Google Scholar

[13] Krechel S.W., Bildner J. CRIES: a new neonatal postoperative pain measurement score. Initial testing of validity and reliability. Paediatr Anaesthesiol. 1995; 5: 53-61.

DOI: 10.1111/j.1460-9592.1995.tb00242.x

Google Scholar

[14] Stevens B., Johnston C., Petryshen P., Taddio A. Premature Infant Pain Profile: development and initial validation. Clin J Pain. 1996; 11: 12-22.

DOI: 10.1097/00002508-199603000-00004

Google Scholar

[15] Hummel P., Lawlor-Klean P., Weiss M.G. Validity and reliability of the N-PASS assessment tool with acute pain. J Perinatol. 2009: 1-5.

DOI: 10.1038/jp.2009.185

Google Scholar

[16] Hummel P., Puchalski M., Creech S. D., Weiss M. G. Clinical reliability and validity of the N-PASS: neonatal pain, agitation and sedation scale with prolonged pain. J Perinatol. 2008; 16: 55-60.

DOI: 10.1038/sj.jp.7211861

Google Scholar

[17] Hu, M. K., 1962. Visual pattern recognition by moment invariants, IRE Transactions on Information Theory, Vol. 8, pp.179-187.

DOI: 10.1109/tit.1962.1057692

Google Scholar

[18] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ, (1995).

Google Scholar

[19] Pasi Luukka: Similarity classifier using similarity measure derived from Yu's norms in classification of medical data sets. Comp. in Bio. and Med. 37(8): 1133-1140 (2007).

DOI: 10.1016/j.compbiomed.2006.10.005

Google Scholar