[1]
S. C, Chuang, Shih F. Y., and. Slack M. R. Machine recognition and representation of neonatal facial displays of acute pain, Artificial Intelligence in Medicine 36(2), 2006, pp.211-222.
DOI: 10.1016/j.artmed.2004.12.003
Google Scholar
[2]
S. Brahnam, C. Chuang, S. S Randal, and Y. S Frank. Machine assessment of neonatal facial expressions of acute pain, Decision Support Systems 43, 2007, pp.1242-125.
DOI: 10.1016/j.dss.2006.02.004
Google Scholar
[3]
S. Brahnam , L. Nanni, and S. Randall. Introduction to neonatal facial pain detection using common and advanced face classification techniques, Advanced Computation Intelligence Paradigms in Healthcare, 1, Studies in Computational Intelligence (SCI) Series: Springer-Verlag, Berlin, 48, 2004, pp.225-253.
DOI: 10.1007/978-3-540-47527-9_9
Google Scholar
[4]
K. Pun, and Y. Moon, Recent advances in ear biometrics., pp.144-149, (2004).
Google Scholar
[5]
C. Rafael Gonzalez, E. Richard Woods and L. Steven Eddins (2004). Digital Image Processing using MATLAB. Pearson Education. ISBN 978-81-7758-898-9.
Google Scholar
[6]
Spence K., Gillies D., Harrison D., Johnston L., Nagy S. A. Reliable pain assessment tool for clinical assessment in the neonatal intensive care unit. J Obstet Gynecol Neonatal Nurs. 2003; 34: 80-86.
DOI: 10.1177/0884217504272810
Google Scholar
[7]
Cignacco E., Mueller R., Hamers J.P.H. , Gessler P. Pain assessment in the neonate using the Bernese Pain Scale for Newborns. Early Hum Dev. 2004; 78: 115-121.
DOI: 10.1016/j.earlhumdev.2004.04.001
Google Scholar
[8]
Lawrence J., Alcock D., McGrath P., Kay S., MacMurray S. B., Dulberg D. The development of a tool to assess neonatal pain. Neonatal Netw. 1993; 11: 59-66.
Google Scholar
[9]
Jason L. Mitchell, Marwan Y. Ansari and Evan Hart Advanced Image Processing with DirectX® 9 Pixel Shaders, - From ShaderX2 - Shader Programming Tips and Tricks with DirectX 9, (2003).
Google Scholar
[10]
Tapan Gandhi, Bijay Ketan Panigrahi and Sneh Anand, A comparative study of wavelet families for EEG signal classification, Neurocomputing, Vol. 74, pp.3051-3057, (2011).
DOI: 10.1016/j.neucom.2011.04.029
Google Scholar
[11]
M. Hariharan, M.P. Paulraj and S. Yaccob, Time-domain features and probabilistic neural network for the detection of vocal fold pathology, Malaysian Journal of Computer Science, Vol. 23, No. 1, pp.60-67, (2010).
DOI: 10.22452/mjcs.vol23no1.5
Google Scholar
[12]
M. Hariharan, M. P. Paulraj and S. Yaccob, Detection of vocal fold paralysis and oedema using time-domain features and probabilistic neural network, International journal of biomedical engineering and technology, Vol. 6, No. 1, pp.46-57, (2011).
DOI: 10.1504/ijbet.2011.040452
Google Scholar
[13]
Specht, Probabilistic neural networks,. Neural networks, Vol. 3, No. 1, pp.109-118, (1990).
Google Scholar
[14]
T. Sitamahalakshmi, Dr.A. Vinay Babu,M. Lagadesh and Dr. K.V.V. Chandra Mouli, Performance of radial basis function networks and probabilistic neural networks for telugu character recognition, Global Journal of Computer Science and Technology, Vol. 11, pp. March (2011).
Google Scholar
[15]
D. F Specht, A general regression neural network. Neural Networks, Vol. 2 No. 6, pp.568-576, (1991).
Google Scholar