Kinetic and Thermodynamic Study Adsorbing Methylene Blue on Nanozirconia

Article Preview

Abstract:

In present study, uniformed nanozirconia is obtained via precipitation, ball milling and spray drying. The characteristics of methylene blue adsorption by nanozirconia are studied in details. The morphology of nanozirconia is examined by SEM. The influence of temperature is studied to obtain the optimal adsorption conditions. The equilibrium adsorption isotherms and the kinetic properties of the adsorption process are investigated to study the mechanism. The thermodynamic properties of methylene blue adsorption is investigated, and the thermodynamic parameters of Gθ, Hθ and Sθ are calculated. The results show nanozirconia has high adsorption ability of 43.99 mg/g to methylene blue, and the adsorption reaction is a spontaneous and physic-sorption process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1311-1319

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sharma & Uma, Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. J. Chem. Eng. Data. 55 (2010), 435-439.

DOI: 10.1021/je900408s

Google Scholar

[2] Yanhui Li, Qiuju Du, Tonghao Liu, Jiankun Sun, Yonghao Wang, Shaolin Wu, Zonghua Wang, Yanzhi Xia, Linhua Xia. Methylene blue adsorption on grapheme oxide / calcium alginate composites. Carbohyd. Polym. 95 (2013), 501-507.

DOI: 10.1016/j.carbpol.2013.01.094

Google Scholar

[3] D. Kobayashi, C. Honma, A. Suzuki, T. Takahashi, H. Matsumoto, C. Kuroda, K. Otake, A. Shono. Comparison of ultrasonic degradation rates constants of methylene blue at 22. 8 kHz, 127kHz, and 490kHz. Ultrason. Sonochem. 19 (2012), 745-749.

DOI: 10.1016/j.ultsonch.2012.01.004

Google Scholar

[4] W. J. Huang, Z. W. Li, Y. J. Lin, C. H. Yang, Y. J. Liou. Electro-catalytic characterization and dye degradation of Ti1−x(Bi)xO2 in acidic solution. Ceram. Int. 38 (2012), 4631-4634.

DOI: 10.1016/j.ceramint.2012.02.043

Google Scholar

[5] P. Li, G. Zhao, K. Zhao, J. Gao, T. Wu. An efficient and energy saving approach to photocatalytic degradation of opaque high-chroma methylene blue wastewater by electrocatalytic pre-oxidation. Dyes Pigments. 92 (2012), 923-928.

DOI: 10.1016/j.dyepig.2011.06.009

Google Scholar

[6] F. Zhao, L. Liu, F. Yang, N. Ren. E-Fenton degradation of MB during filtration with Gr/PPy modified membrane cathode. Chem. Eng. J. Available online 5 July 2013. http: /dx. doi. org/10. 1016/j. cej. 2013. 06. 117.

DOI: 10.1016/j.cej.2013.06.117

Google Scholar

[7] T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang. Adsorption of methylene blue from aqueous solution by graphene. Colloid. Surface. B. 90 (2012), 197-203.

DOI: 10.1016/j.colsurfb.2011.10.019

Google Scholar

[8] Y. -S. Ho, W. -T. Chiu, C. -C. Wang. Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour. Technol. 96 (2005), 1285-1291.

DOI: 10.1016/j.biortech.2004.10.021

Google Scholar

[9] H. L. Liu, X. F. Sun, C. Q. Yin, C. Hu. Removal of phosphate by mesoporous ZrO2. J. Hazard. Mater. 151 (2008), 616-622.

Google Scholar

[10] A. Wael, Y. Nao-Daniel, W. Martin, S. Witkowski, J. R. Strub. Influence of preparation and wall thickness on the resistance to fracture of zirconia implant abutments. Clin. Implant Dent. R. 14 (2012), 196 -203.

DOI: 10.1111/j.1708-8208.2011.00428.x

Google Scholar

[11] M. N. Aboushelib, J. P. Matinlinna. Combined novel bonding method of resin to zirconia ceramic in dentistry: A pilot study. Adhes J. Sci. Technol. 25 (2011), 1049-1060.

DOI: 10.1163/016942410x534993

Google Scholar

[12] M. Das, C. Dhand, G. Sumana. Electrophoretic Fabrication of Chitosan-Zirconium-Oxide, Nanobiocomposite Platform for Nucleic Acid Detection. Biomacromolecules. 12 (2011), 540-547.

DOI: 10.1021/bm1013074

Google Scholar

[13] Y. H. Yun, V. T. Turitto, K. P. Daigle. Initial hemocompatibility studies of titanium and zirconium alloys: prekallikrein activation, fibrinogen adsorption, and their correlation with surface electrochemical properties. J. Biomed. Mater. Res. 32 (1996).

DOI: 10.1002/(sici)1097-4636(199609)32:1<77::aid-jbm9>3.0.co;2-m

Google Scholar

[14] F. Ferrero. Adsorption of methylene blue on magnesium silicate: kinetics, equilibria and comparison with other adsorbents. J. Environ. Sci. 23 (2010), 467-473.

DOI: 10.1016/s1001-0742(09)60131-5

Google Scholar

[15] A. A. Farghali, M. Bahgat, W. M. A. El. Rouby, M. H. Khedr. Decoration of MWCNTs with CoFe2O4 nanoparticles for methylene blue dye adsorption. J. Solution Chem. 41 (2012), 2209-2225.

DOI: 10.1007/s10953-012-9934-0

Google Scholar

[16] Aksu Z., Donmez G. A. Comparative study on the biosorption characteristics of some yeast for remazol blue reactive dye. Chemosphere, 50 (2003), 1075-1083.

DOI: 10.1016/s0045-6535(02)00623-9

Google Scholar

[17] J. Ma, L. L. Yu, L. Jin, Z. W. Yuan, J. H Chen. Adsorption of methylene blue on the modified as-prepared carbon nanotubes. Environ. Chem. 31 (2012), 646-652.

Google Scholar

[18] E. Rubín, P. Rodríguez, R. Herrero, de E. S. Vicente. Adsorption of methylene blue on chemically modified algal biomass: equilibrium, dynamic, and surface data. J. Chem. Eng. Data. 55 (2010), 5707-5714.

DOI: 10.1021/je100666v

Google Scholar

[19] I. Langmuir. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40 (1918), 1361-1403.

DOI: 10.1021/ja02242a004

Google Scholar

[20] H. Freundlich. Over the adsorption in solution. J. Phys. Chem. 57 (1906), 385-470.

Google Scholar

[21] F. Haghseresht, G. Lu. Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energ. Fuel. 12 (1998), 1100-1107.

DOI: 10.1021/ef9801165

Google Scholar

[22] H. Tel, Y. Altas, M. Eral, S. Sert, B. Cetinkaya, S. Inan. Preparation of ZrO2 and ZrO2-TiO2 microspheres by the sol-gel method and an experimental design approach to their strontium adsorption behaviours. Chem. Eng. J. 161 (2010), 151-160.

DOI: 10.1016/j.cej.2010.04.053

Google Scholar

[23] A. Bentouami, M. S. Quali. Cadmium removal from aqueous solutions by hydroxyl-8 quinoleine intercalated bentonite. J. Colloid Interface Sci. 293 (2006), 270-277.

DOI: 10.1016/j.jcis.2005.06.040

Google Scholar

[24] S. S. Mohd, H. C. Chin, Z. Sarani, M. J. Saad, K. A. Mohd, L. C. Kah, K. Poi Sim, S. C. Wee. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresour. Technol. 102 (2011), 7237-7243.

DOI: 10.1016/j.biortech.2011.05.011

Google Scholar