Investigation of the Predictive Ability of Two Advection Schemes on the Formation of a Turbulent Separation Bubble in a Boundary Layer Wind Tunnel

Article Preview

Abstract:

This paper presents a study that correlates the capacity of two advection schemes in foreseeing flow separation inside a boundary layer wind tunnel (BLWT herein after). The geometry of the BLWT forces the generation of a turbulent separation bubble. Numerical simulations were carried out with the commercial Computational Fluid Dynamics software ANSYS-CFX®. The high-resolution advection scheme is shown to be more appropriate than the upwind scheme in predicting flows where properties are subject to strong gradients, such as pressure and velocity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-185

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] BAKER C.J.; Wind engineering— past, present and future. Journal of Wind Engineering and Industrial Aerodynamics. v. 95, p.843–870, (2007).

DOI: 10.1016/j.jweia.2007.01.011

Google Scholar

[2] POPE, S. B.; RAE, W. H.; BARLOW, J.B. Low-Speed Wind Tunnel Testing. 3. ed. New York: John Wiley & Sons, 1999. 714p.

Google Scholar

[3] MERRISON, Jonathan Peter et al. An environmental simulation wind tunnel for studying Aeolian transport on mars. Planetary and Space Science. Maryland Heights. v. 56, n. 3-4. pp.426-437, (2008).

DOI: 10.1016/j.pss.2007.11.007

Google Scholar

[4] POPE, Stephen B. Turbulent flows. 1. ed. Cambrigde: Cambridge University Press, 2000. 771p.

Google Scholar

[5] REZENDE, André Luiz Tenório. Análise numérica da bolha de separação do escoamento turbulento sobre uma placa plana fina inclinada. 2009. 263f. Thesis (Doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro.

DOI: 10.17771/pucrio.acad.14607

Google Scholar

[6] ZHANG, Chunchao. Simulation of a turbulent separation bubble using RANS. 2012. 95f. Dissertation (Master's Degree) – Université du Québec, École de technologie supérieure, Montréal.

Google Scholar

[7] NA, Y.; MOIN, P. Direct Numerical Simulation of a separated turbulent boundary layer. Journal of Fluid Mechanics. Cambridge University Press. v. 374. pp.379-405, (1998).

DOI: 10.1017/s0022112098009987

Google Scholar

[8] FERREIRA, V. G. et al. Application of a bounded upwinding scheme to complex fluid dynamics problems. Mathematical and Computer Modelling. v. 57. pp.435-459, (2013).

DOI: 10.1016/j.mcm.2012.06.021

Google Scholar

[9] BERCOVICI, M. et al. Compact adaptive-grid scheme for high numerical resolution simulations of isotachophoresis. Journal of Chromatography A. v. 1217. pp.588-599, (2010).

DOI: 10.1016/j.chroma.2009.11.072

Google Scholar

[10] ÇENGEL, Yunus; CIMBALA, John. Mecânica dos Fluidos: Fundamentos e Aplicações. 1. ed. São Paulo: McGraw-Hill, 2007. 819 p.

Google Scholar

[11] SENGUPTA, Anindya; SARKAR, Partha P. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds. Journal of Wind Engineering and Industrial Aerodynamics. Amsterdam. v. 96, n. 3, pp.345-365, Mar. (2008).

DOI: 10.1016/j.jweia.2007.09.001

Google Scholar

[12] VERSTEEG, H. K.; MALALASEKERA, W. An Introduction to Computational Fluid Dynamics – The Finite Volume Method. 2. ed. Essex: Pearson Education Limited, 2007. 503p.

Google Scholar

[13] ANSYS. CFX Solver Theory manual. Version 14. 5. Ansys, (2012).

Google Scholar

[14] BOURIGA, M.; LEMYRE-BARON, J. -S.; MORENCY, F.; and WEISS, J. Preliminary Experimental and Numerical Investigations of the Flow inside a Boundary Layer Wind Tunnel. Proceedings of the 21st Conference of the CFD Society of Canada, Sherbrooke, QC, Canada, May (2013).

DOI: 10.1139/tcsme-2014-0034

Google Scholar