Thermoelectric Properties of Transition Metal Deposited MWCNT Buckypaper

Article Preview

Abstract:

In this work, we report the preparation of transition metal deposited flexible multiwalled carbon nanotube buckypaper for thermoelectric applications. MWCNT buckypaper prepared by dispersion and filtration method was then deposited with the transition metals such as silver (Ag) and copper (Cu) by the electrodeposition method. We measured the voltage yield of Ag and Cu-doped buckypaper by making the temperature gradient along the sample. We established the temperature dependent Seebeck coefficient for Ag and Cu-doped buckypaper and found significant increase in the S(T). It is also revealed that remarkable rise in the value of S(T) and output voltage by connecting 3-sheets of BP in series. Here we determined the enhancement of Seebeck coefficient by increasing the number of BP sheets, thereby improving the thermoelectric efficiency. Furthermore, these paper-like CNT films show good flexibility, which makes them possible to be widely applied in various flexible energy conversion devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-114

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G. Bulk nanostructured thermoelectric materials: current research and future prospects (2009) Energy Environ. Sci., 2 (5), pp.466-479.

DOI: 10.1039/b822664b

Google Scholar

[2] Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States (2008).

DOI: 10.1126/science.1159725

Google Scholar

[3] Szczech, J.R., Higgins, J.M., Jin, S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials (2011) J. Mater. Chem., 21 (12), pp.4037-4055.

DOI: 10.1039/c0jm02755c

Google Scholar

[4] Lota, G., Fic, K., Frackowiak, E. Carbon nanotubes and their composites in electrochemical applications (2011) Energy Environ. Sci., 4 (5), pp.1592-1605.

DOI: 10.1039/c0ee00470g

Google Scholar

[5] Gohier, A., Dhar, A., Gorintin, L., Bondavalli, P., Bonnassieux, Y., Cojocaru, C.S. All-printed infrared sensor based on multiwalled carbon nanotubes (2011) Appl. Phys. Lett., 98 (6), pp.063103-063105.

DOI: 10.1063/1.3552686

Google Scholar

[6] Yeh, Y.C., Chang, L.W., Miao, H.Y., Chen, S.P., Lue, J.T. Model analysis of temperature dependence of abnormal resistivity of a multiwalled carbon nanotube interconnection (2010) Nanotechnol. Sci. Appl., 3, pp.37-43.

DOI: 10.2147/nsa.s11696

Google Scholar

[7] Boccaccini, A.R., Keim, S., Ma, R., Li, Y., Zhitomirsky, I. Electrophoretic deposition of biomaterials (2010) J. R. Soc. Interface, 7, pp. S581-S613.

DOI: 10.1098/rsif.2010.0156.focus

Google Scholar

[8] Wang, Z., Liang, Z., Wang, B., Zhang, C., Kramer, L. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites (2004) Composites Part A, 35 (10), pp.1225-1232.

DOI: 10.1016/j.compositesa.2003.09.029

Google Scholar

[9] Chen, Y.W., Miao, H.Y., Zhang, M., Liang, R., Zhang, C., Wang, B. Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission (2009) Nanotechnology, 20 (32), pp.325302-325309.

DOI: 10.1088/0957-4484/20/32/325302

Google Scholar

[10] Artukovic, E., Kaempgen, M., Hecht, D.S., Roth, S., Gruner, G. Transparent and Flexible Carbon Nanotube Transistors (2005) Nano Lett., 5 (4), pp.757-760.

DOI: 10.1021/nl050254o

Google Scholar

[11] Bekyarova, E., Itkis, M.E., Cabrera, N., Zhao, B., Yu, A., Gao, J., Haddon, R.C. Electronic Properties of Single-Walled Carbon Nanotube Networks (2005) J. Am. Chem. Soc., 127 (16), pp.5990-5995.

DOI: 10.1021/ja043153l

Google Scholar

[12] Itkis, M.E., Borondics, F., Yu, A., Haddon, R.C. Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films (2006) Science, 312 (5772), pp.413-416.

DOI: 10.1126/science.1125695

Google Scholar

[13] Yu, C., Kim, Y.S., Kim, D., Grunlan, J.C. Thermoelectric Behavior of Segregated-Network Polymer Nanocomposites (2008) Nano Lett., 8 (12), pp.4428-4432.

DOI: 10.1021/nl802345s

Google Scholar