[1]
Shunsuke Sato et. al, Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalyst, J. Am. Chem. Soc., 2011, 133 (39), p.15240–15243.
DOI: 10.1021/ja204881d
Google Scholar
[2]
Satoshi Yotsuhashi et. Al., Enhanced CO2 reduction capability in an AlGaN/GaN photoelectrode, Appl. Phys. Lett. 100, 243904 (2012); http: /dx. doi. org/10. 1063/1. 4729298 (3 pages).
DOI: 10.1063/1.4729298
Google Scholar
[3]
Kosuke Iizuka et. al Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) Using Water as a Reducing Reagent, J. Am. Chem. Soc., 2011, 133 (51), p.20863–20868 DOI: 10. 1021/ja207586e.
DOI: 10.1021/ja207586e
Google Scholar
[4]
Rajesh K. Yadav et. al. A Photocatalyst–Enzyme Coupled Artificial Photosynthesis System for Solar Energy in Production of Formic Acid from CO2, J. Am. Chem. Soc., 2012, 134 (28), p.11455–11461, DOI: 10. 1021/ja3009902.
DOI: 10.1021/ja3009902
Google Scholar
[5]
M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells, Nature 275, 115 - 116 (14 September 1978); doi: 10. 1038/275115a0.
DOI: 10.1038/275115a0
Google Scholar
[6]
D. Canfield et. al. Reduction of Carbon Dioxide to Methanol on n ‐ and p ‐ GaAs and p ‐ InP . Effect of Crystal Face, Electrolyte and Current Density, doi: 10. 1149/1. 2120090 J. Electrochem. Soc. 1983 volume 130, issue 8, 1772-1773.
DOI: 10.1149/1.2120090
Google Scholar
[7]
H. Yamashita et al., Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts, Research on Chemical Intermediates January 1994, Volume 20, Issue 8, pp.815-823.
DOI: 10.1163/156856794x00568
Google Scholar
[8]
S. Ha; R. Larsen, Direct formic acid fuel cells with 600 mA cm -2 at 0. 4 Vand 22°C, Fuel Cells 2004; 4(4): 337-343.
DOI: 10.1002/fuce.200400052
Google Scholar
[9]
Kimfung LI, Conversion of Solar Energy to Fuels by Inorganic Heterogeneous Systems, Chinese Journal of Catalysis, 2011, Vol. 32 No. 6, Article ID: 0253-9837(2011)06-0879-12, DOI: 10. 1016/S1872-2067(10)60209-4 Review: 879–890.
DOI: 10.1016/s1872-2067(10)60209-4
Google Scholar
[10]
Frigyes Solimosi et al., Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2, Catalysis Letters, 27, 1994, 61-65.
DOI: 10.1007/bf00806978
Google Scholar
[11]
Amir Abidov et al., The Evaluation of Photocatalytic Properties of Iron Doped Titania Photocatalyst by Degradation of Methylene Blue Using Fluorescent Light Source, 2013, Advanced Materials Research, 652-654, 1700.
DOI: 10.4028/www.scientific.net/amr.652-654.1700
Google Scholar
[12]
Amir Abidov et al. Photoelctron Spectroscopy Characterization of Fe doped TiO2 Photocatalyst, Int. Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 3, 2013, pp.294-296.
DOI: 10.7763/ijmmm.2013.v1.63
Google Scholar
[13]
Ramsberger et al. The ultraviolet absorption of formic acid, J. Am. Chem. Soc., 1926, 48 (5), p.1267–1273.
Google Scholar
[14]
Rajesh J. Thillai Sivakumar Natarajan, and Hari C. Bajaj, Ind. Eng. Res. 2009, 48, 10262-10267.
Google Scholar