Transparent Conductive Oxide GZO Thin Films by Sol-Gel Process

Article Preview

Abstract:

In this work, GZO thin films were prepared by sol-gel process and spin coating technique. The XRD results showed the preferential c-axis orientation of the crystallites and the presence of the wurite phase of ZnO and it were suggested that the presence of Ga might be changed the d-spacing of ZnO to formation the Ga-doped zinc oxide. The effects of Ga amount on the conductivity and transparency were studied. The electrical resistivity for the GZO film doped 2 at% of Ga could be lowered to be 7.510-3Ω-cm with the calcination temperature was 550°C and hydrogen treatment was conducted in the Ar/H2 (97/3) atmosphere at 500°C. In addition, the optical transmittances of GZO thin films were higher than 90% in visible wavelength region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-44

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. K. R. Senadeera, K. Nakamura, T. Kitamura, Y. Wada and S. Yanagida: Appl. Phys. Lett. 83 (2003), 5470.

Google Scholar

[2] K. Tonooka, H. Bando and Y. Aiura: Thin Solid Films 445 (2003), 327.

Google Scholar

[3] Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo and Y. R. Li: Mater. Res. Bull. 41 (2006), 354.

Google Scholar

[4] J. H. Lee and B. O. Park: Thin Solid Films 426 (2003), 94.

Google Scholar

[5] J. Herrero and C. Guillen: Thin Solid Films 451–452(2004), 630.

Google Scholar

[6] D. Basak, G. Amin, B. Mallik, G. K. Paul and S. K. Sen:J. Cryst. Growth 256 (2003), 73.

Google Scholar

[7] M. Ohyama, H. Kozuka and T. Yoko: J. Am. Ceram. Soc. 81 (1998), 1622.

Google Scholar

[8] Y. Yamamoto, K. Saito, K. Takakashi and M. Konagai: Sol. Energy Mater. Sol. Cells 65 (2001), 125.

Google Scholar

[9] A. Sanchez-Juarez, A. Tiburcio-Silver, A. Oritz, E. P. Zironi and J. Rickards: Thin Solid Films 333 (1998 ), 196.

DOI: 10.1016/s0040-6090(98)00851-7

Google Scholar

[10] Y. Natsume and H. Sakata: Mater. Chem. Phys. 78 (2002), 170.

Google Scholar

[11] B. E. Sernelius, F. -K. Berggren, Z. -C. Jin, I. Hamberg and C. G. Granqvist: Phys. Rev. 37 (1998), 10244.

Google Scholar

[12] D. F. Paraguay, J. Morales, L.W. Estrada, E. Andrade and M. Miki-Yoshida: Thin Solid Films 366 (2000), 16.

Google Scholar

[13] J. -H. Lee, K. -H. Ko and B. -O. Park: J. Cryst. Growth 247 (2003), 119.

Google Scholar

[14] K. Yim, H. W. Kim and C. Lee: Mater. Sci. Technol. 23 (2007), 108.

Google Scholar

[15] O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino and T. Makino: Appl. Phys. Lett. 89 (2006), 091904.

DOI: 10.1063/1.2337542

Google Scholar

[16] Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang and B. H. Zhao:J. Cryst. Growth 304 (2007), 64.

Google Scholar

[17] K. T. R. Reddy, T. B. S. Reddy, I. Forbes and R. W. Miles: Surf. Coat. Technol. 151 (2002), 110.

Google Scholar

[18] A. R. Kaul , O. Y. Gorbenko, A. N. Botev and L. I. Burova: Superlatt. Microstruct. 38 (2005), 272.

Google Scholar

[19] M. Snure and A. Tiwari: J. Appl. Phys. 101 (2007), 124912.

Google Scholar

[20] V. Fathollahi and M. M. Amini: Mater. Lett. 50 (2001), 235.

Google Scholar

[21] E. Burstein: Phys. Rev. 93 (1954), 632.

Google Scholar

[22] T. S. Moss: Proc. Phys. Soc. Lond. B 67(1954), 775.

Google Scholar

[23] J. Hu and R. G. Gordon: J. Appl. Phys. 72 (1992), 5381.

Google Scholar

[24] K. I. Hagemark and L. C. Chacka: J. Solid State Chem. 15(1975), 261.

Google Scholar

[25] J. Schoenes, K. Kanazawa and E. Kay: J. Appl. Phys. 48 (1977), 2537.

Google Scholar

[26] F. Oba, A. Togo, I. Tanaka, J. Paier and G. Kresse: Phys. Rev. B 77 (2008), 245202.

Google Scholar