[1]
X. Zhang, X.H. Wang, L.Z. Wang; Reliability Intensifying Test Design for Electro-hydraulic Servo System. Equipment Environmental Engineering. Vol. 7(2010), pp.208-212, 230.
Google Scholar
[2]
J. Sheng, R. Chen; Aging, Protection and Monitoring (1). Chemical Industry Standardization and Quality Supervision. Vol. 1(1996), pp.30-35.
Google Scholar
[3]
Y.T. Hsu, K.S. Chang-Liao, T.K. Wang, C.T. Kuo; Monitoring the moisture-related degradation of ethylene propylene rubber cable by electrical and SEM methods. Polymer Degradation and Stability. Vol. 91(2006), pp.2357-2364.
DOI: 10.1016/j.polymdegradstab.2006.04.003
Google Scholar
[4]
F.Z. Chen, J.L. Qian; Studies of the thermal degradation of waste rubber. Waste Management. Vol. 23(2003), pp.463-467.
DOI: 10.1016/s0956-053x(03)00090-4
Google Scholar
[5]
M.A. Kader, A.K. Bhowmick; Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates. Polymer Degradation and Stability. Vol. 79(2003), pp.283-295.
DOI: 10.1016/s0141-3910(02)00292-6
Google Scholar
[6]
A. Jha, A.K. Bhowmick; Thermal degradation and ageing behaviour of novel thermoplastic elastomeric nylon-6/acrylate rubber reactive blends. Polymer Degradation and Stability. Vol. 62(1998), pp.575-586.
DOI: 10.1016/s0141-3910(98)00044-5
Google Scholar
[7]
S. Chen,H. Yu,W. Ren, Y, Zhang; Thermal degradation behavior of hydrogenated nitrile-butadiene rubber (HNBR)/clay nanocomposite and HNBR/clay/carbon nanotubes nanocomposites. Thermochimica Acta. Vol. 491 (2009), p.103–108.
DOI: 10.1016/j.tca.2009.03.010
Google Scholar
[8]
J.P. Lin, C.Y. Chang, C.H. Wu, S.M. Shih; Thermal degradation kinetics of polybutadiene rubber. Polymer Degradation and Stability. Vol. 53(1996), pp.295-300.
DOI: 10.1016/0141-3910(96)00098-5
Google Scholar
[9]
P.Y. Gac, V. Saux, M. Paris, Y. Marco; Ageing mechanism and mechanical degradation behavior of polychloroprene rubber in a marine environment: Comparison of accelerated ageing and long term exposure. Polymer Degradation and Stability. Vol. 97(2012).
DOI: 10.1016/j.polymdegradstab.2011.12.015
Google Scholar
[10]
D. Huang, B.J. LaCount, J.M. Castro, F.I. Hoover; Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds I. Cyclic aging. Polymer Degradation and Stability. Vol. 74(2001), pp.353-362.
DOI: 10.1016/s0141-3910(01)00185-9
Google Scholar
[11]
D.R. Bauer, J.M. Baldwin, K.R. Ellwood; Rubber aging in tires. Part 2: Accelerated oven aging tests. Polymer Degradation and Stability. Vol. 92 (2007), pp.110-117.
DOI: 10.1016/j.polymdegradstab.2006.08.014
Google Scholar
[12]
P.R. Morrell, M. Patel, A.R. Skinner; Accelerated thermal ageing studies on nitrile rubber O-rings. Polymer Testing. Vol. 22 (2003), p.651–656.
DOI: 10.1016/s0142-9418(02)00171-x
Google Scholar
[13]
W Nelson; Analysis of performance-degradation data from accelerated tests. IEEE Transactions on Reliability. Vol. 30(1981), pp.149-154.
DOI: 10.1109/tr.1981.5221010
Google Scholar
[14]
W.Q. Meeker, M. Hamada; statistical Tools for the Rapid Development and Evaluation of High-Reliability Products. IEEE Transactions on Reliability. Vol. 44(1995), pp.391-400.
DOI: 10.1109/24.387370
Google Scholar
[15]
S.J. Bae, K. Way, H.K. Paul. Degradation models and implied lifetime distributions. Reliability Engineering & System Safety. Vol. 92( 2007), pp.601-608.
DOI: 10.1016/j.ress.2006.02.002
Google Scholar