Effect of ZnO Seed Layer and TiO2 Coating Treatments on Aligned TiO2/ZnO Nanostructures for Dye-Sensitized Solar Cells

Article Preview

Abstract:

A chemical bath deposition (CBD) method was applied to grow zinc oxide nanorod arrays on transparent conductive oxides acting as templates for the synthesis of TiO2/ZnO nanostructures (TiO2/ZNR) followed by HCl etching, and then these nanostructures were assembled as anodes in dye-sensitized solar cells. The ZnO nanorods, predominantly grew with good crystallinity along c-axis, exhibit wurtzite structure with smooth surface. Etching of the TiO2/ZNR by HCl changes the most preferential crystal plane of ZnO from (002) to (100) and significantly increases the atomic ratio of Ti/Zn. Optical absorption measurements indicate a band gap energy of 3.1 eV for ZNR and TiO2/ZNR. Increasing the spin coating time (SCT) of TiO2 on ZNR increases the PL intensity. The seed layer number (SLN) of ZnO exerts moderate influence on the photo-to-electricity conversion and an optimum SLN was observed for this study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-74

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Charoensirithvorn, Y. Ogomi, T. Sagwa, S. Hayase, S. Yoshikawa, J. Electrochem. Soc. 157 (2010) B354-B356.

Google Scholar

[2] J. Chae, M. Kang, J. Power Source 196 (2011) 4143-4151.

Google Scholar

[3] L. -Y. Lin, M. -H. Yeh, C. -P. Lee, C. -Y. Chou, R. Vittal, K. -C. Ho, Electrochimica Acta 62 (2012) 341-347.

Google Scholar

[4] D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang, Z. Biau, J. Phys. Chem. 112 (2008) 8486-8494.

Google Scholar

[5] J.T. Park, R. Patel, H. Jeon, D. J. Kim, J. -S. Shin, J. H. Kim, J. Mater. Chem. 22 (2012) 6131-6138.

Google Scholar

[6] J. Dewalque, R. Cloots, F. Mathis, O. Dubreuil, N. Krins, C. Henrist, J. Mater. Chem. 21 (2011) 7536.

Google Scholar

[7] K. Lee, D. Kim, P. Schmuki, Chem. Commun. 47 (2011) 5789-5791.

Google Scholar

[8] X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T. J. Latempa, C.A. Grimes, Nano Lett. 8 (2008) 3781.

Google Scholar

[9] J. Chung, J. Lee, S. Lim, Phys. B, 405 (2010) 2593.

Google Scholar

[10] L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, I. Uhlendorf, J. Phys. Chem. B, 101 (1997) 10281.

DOI: 10.1021/jp972466i

Google Scholar

[11] N. Kopidakis, K. D. Benkstein, J. V. d. Lagemaat, A. J. Frank, Phys. Rev. B, 73 (2006) 045326.

Google Scholar

[12] M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C, 111 (2007) 1035.

Google Scholar

[13] E.M. Kaidashev, M. Lorenz, H. Von Wenckstern, A. Rahm, H.C. Semmelhack, K.H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Applied Physics Letters 82 (2003) 3901.

DOI: 10.1063/1.1578694

Google Scholar

[14] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nature Materials 4 (2005) 455.

Google Scholar

[15] P.S. Archana, R. Jose, C. Vijila, S. Ramakrishna, Journal of Physical Chemistry C 113 (2009) 21538.

Google Scholar

[16] Y.F. Hsu, Y.Y. Xi, A.B. Djuriˇsi ´ c, W.K. Chan, Applied Physics Letters 92 (2008).

Google Scholar

[17] J.B. Baxter, A.M. Walker, K.V. Ommering, E.S. Aydil, Nanotechnology 17 (2006) S304.

Google Scholar

[18] C. H. Ku, J. J. Wu, Nanotechnology, 18 (2007) 505706.

Google Scholar

[19] C. K. Ku, H. H. Yang, G. R. Chen, J. J. Wu, Crystal Growth Design 8 (2008) 283.

Google Scholar

[20] M. Zhou, J. Yu, S. Liu, P. Zhai, L. Jiang, J. Hazard. Mater. 154 (2008) 1141.

Google Scholar

[21] L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, J. Sun, Solar Energy Mater. Solar Cells 90 (2006) 1773.

Google Scholar

[22] J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, W. K. Ho, J. phys. Chem. B 107 (2003) 13871.

Google Scholar